• Title/Summary/Keyword: Finite Opening

Search Result 344, Processing Time 0.029 seconds

Cyclic Vehavior of composite Beams with Double-Circular Web Openings (쌍원형 개구부를 가진 합성보의 이력거동)

  • 김원기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.162-169
    • /
    • 1999
  • Intentionally weakened girders near the beam-to-colum connection lead ductile failures at the weakened points prior to potential brittle failure at the connection points subjected to strong earthquake. Recent research investigated cyclic behavior of composite beams with a rectangular web opening and find out ductile failure of such beams due to plastic hinge formation of T-section at the four corners of the rectangular opening. But eventual failures of T-sections are resulted from local buckling of T-section having a narrow stem and a narrow bound of plastic hinge formation. This continuing research proposes double-circular opening instead of rectangular one in ofter to improve energy dissipation capacity as well as composite beam strength, Experimental test of two specimens was carried out and its results are compared with those of nonlinear finite element analyses

  • PDF

Effect of local web buckling on the cyclic behavior of reduced web beam sections (RWBS)

  • Akrami, Vahid;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.641-657
    • /
    • 2015
  • Application of reduced web beam section (RWBS) as a sacrificial fuse element has become a popular research field in recent years. Weakening of beam web in these connections may cause local web buckling around the opening area which can affect cyclic behavior of connection including: maximum load carrying capacity, strength degradation rate, dissipated energy, rotation capacity, etc. In this research, effect of local web buckling on the cyclic behavior of RWBS connections is investigated using finite element modeling (FEM). For this purpose, a T-shaped moment connection which has been tested under cyclic loading by another author is used as the reference model. Fracture initiation in models is simulated using Cyclic Void Growth Model (CVGM) which is based on micro-void growth and coalescence. Included in the results are: effect of opening corner radii, opening dimensions, beam web thickness and opening reinforcement. Based on the results, local web buckling around the opening area plays a significant role on the cyclic behavior of connection and hence any parameter affecting the local web buckling will affect entire connection behavior.

Evaluation Model for Restraint Effect of Pressure Induced Bending on the Circumferential Through-Wall Crack Opening Considering Plastic Behavior (소성거동을 고려한 원주방향 관통균열 열림에 미치는 압력유기굽힘의 구속효과 평가 모델)

  • Kim, Jin-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1134-1141
    • /
    • 2006
  • This paper presents the model for evaluating restraint effect of pressure induced bending (PIB) on the circumferential through-wall crack opening displacement (COD), which considers plastic behavior of crack. This study performed three-dimensional elastic-plastic finite element (FE) analyses for different crack angle, restraint length, pipe geometry, stress level, and material conditions, and evaluated the influence of each parameter on the PIB restraint effect on COD. Based on these evaluations and additional perfectly-plastic FE analyses, a closed-form model to evaluate the restraint effect of PIB on the plastic crack opening of circumferential through-wall crack, was proposed as functions of crack angle, restraint length, radius to thickness ratio, axial stress corresponding to an internal pressure, and normalized COD evaluated from linear-elastic crack opening condition.

Assistant Model For Considering Slot-Opening Effect on No-load Air-gap Flux Density Distribution in Interior-type Permanent Magnet Motor (매입형 영구자석 전동기에서 무부하시 공극 자속밀도 분포에 대한 Slot-Opening Effect를 고려한 보조 모델)

  • Fang, Liang;Kim, Do-Jin;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.759-765
    • /
    • 2011
  • This paper proposes an effective assistant model for considering the stator slot-opening effect on air gap flux density distribution in conventional interior-type permanent magnet (IPM) motor. Different from the conventional slot-opening effect analysis in surface-type PM (SPM) motor, a composite effect of slot-opening uniquely existing in IPM motor, which additionally causes enhancement of air gap flux density due to magnet flux path distortion in iron core between the buried PM and rotor surface. This phenomenon is represented by a proposed assistant model, which simply deals with this additional effect by modifying magnetic pole-arc using an effective method. The validity of this proposed analytical model is applied to predict the air gap flux density distribution in an IPM motor model and confirmed by finite element method (FEM).

A Study on Slot-opening Effect in Interior Permanent Magnet Motor (매입형 영구자석 전동기의 Slot-opening Effect에 관한 연구)

  • Fang, Liang;Kim, Sung-Il;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1027-1028
    • /
    • 2007
  • In this paper, the variation of air-gap field intensity caused by the slot-opening in interior permanent magnet (IPM) motor is investigated, which is for predicting the instantaneous magnetic field more preciously in analytical method further. It is different with the approach of dealing the slot-opening effect on the air-gap field distribution with the "relative permeance" function in surface permanent magnet (SPM) motor. The prediction of the air-gap field in IPM motor is much more complex than SPM motor. In this study, an approximate estimation method is adopted based on analyzing the changing of flux path in both the IPM rotor part and stator part, and in additional an analytical function defined as "relative pole-arc" is built. The finite element method(FEM) is used for confirming the slot-opening effect on the field prediction.

  • PDF

A Study on the Flow of POSRV in Reactor Coolant System (원자로 냉각계통의 POSRV 유동에 관한 연구)

  • Kwon, Soon-Bum;Kim, In-Goo;Ahn, Hyung-Joon;Lee, Dong-Won;Baek, Seung-Cheol;Kim, Kyung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.568-573
    • /
    • 2003
  • When a safety valve equipped in a nuclear power plant opens in an instant by an accident, a moving shock wave propagates downstream the valve, inducing a complicated unsteady flow field. The moving shock wave may exert severe load to the structure. So, to reduce the load acting on the wall of POSRV, a gradual opening of POSRV is adopted in general. In theses connections, a numerical work is performed to investigate the effect of valve opening time on the unsteady flow fields downstream of the valve. Compressible, two-dimensional Navier-Stokes equations are used with the finite volume method. The obtained results show that sharp pressure rise through moving shock tor the case of instant opening is attenuated by employing the gradual opening of valve. It is turned that the flows for the two cases of gradual valve opening time show the similar to that of highly under-expanded one in jet structure having expansion and compression waves and Mach stem. Also, comparing with the results for the two cases of opening time, the shorter the valve opening is, the pressure gradient at the downstream of the valve becomes softly.

  • PDF

Shape Design of Hinge Stopper to Improve Refrigerator Door Opening Force (냉장고 도어 개방력 개선을 위한 힌지 스토퍼의 형상설계)

  • Seo, Ji-Hwan;Lee, Sanghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, the shape design optimization of a refrigerator door hinge stopper was performed to reduce the discrepancy in the opening forces of the left and right doors of a double-door refrigerator. A finite element model was constructed and analyzed by quasi-static analyses to evaluate the structural performance of the door hinge stopper. The reaction moment calculated at the hinge axis was used as a measure of the door opening and closing forces. The design objective is to increase the door opening force by 50% while maintaining the door closing force and the maximum stress calculated in the body of the hinge stopper at the current level. A new design concept with a contacting slot was proposed to decouple the door closing and opening forces. Shape optimization was performed to determine the dimensions of the new design of the hinge stopper, and the rib pattern was determined by topological optimization to further increase the door opening force. It was observed that the new design met all design requirements.

Experimental and numerical investigations into the composite behaviour of steel frames and precast concrete infill panels with window openings

  • Teeuwen, P.A.;Kleinman, C.S.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.1-21
    • /
    • 2010
  • As an alternative for conventional structures for tall buildings, a hybrid lateral load resisting structure has been designed, enabling the assembly of tall buildings directly from a truck. It consists of steel frames with discretely connected precast concrete infill panels provided with window openings. Besides the stiffening and strengthening effect of the infill panels on the frame structure, economical benefits may be derived from saving costs on materials and labour, and from reducing construction time. In order to develop design rules for this type of structure, the hybrid infilled frame has recently been subjected to experimental and numerical analyses. Ten full-scale tests were performed on one-storey, one-bay, 3 by 3 m infilled frame structures, having different window opening geometries. Subsequently, the response of the full-scale experiments was simulated with the finite element program DIANA. The finite element simulations were performed taking into account non-linear material characteristics and geometrical non-linearity. The experiments show that discretely connected precast concrete panels provided with a window opening, can significantly improve the performance of steel frames. A comparison between the full-scale experiments and simulations shows that the finite element models enable simulating the elastic and plastic behaviour of the hybrid infilled frame.

A Numerical Analysis for Stress Concentration of Openings in Offshore Tubular Steel Tower under Design Loading Condition (설계하중조건에 따른 해상풍력 강재타워 출입구에 발생되는 응력집중에 대한 해석적 연구)

  • Reyno, Hannah;Park, Jong-Sup;Kang, Sung-Yong;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1516-1523
    • /
    • 2015
  • This study investigates the stress concentration factor of a door opening of an offshore tubular steel tower. The tubular steel tower is subjected to eight (8) different load combinations which are deemed to be normal and abnormal operating cases for the ultimate limit state and serviceability limit state. Analytical method using parametric equations and numerical method of finite element are used to analyze the stress components as well as any translations or rotations where the flow of stress is interfered with. A finite element program, ABAQUS, is used for the numerical method analysis. Trends of the stress concentration in the localized area near the opening are studied, and points of interest are defined for comparison among three different cases of tubular steel tower: without door and without reinforcement; without door opening and with reinforcement; and with door opening and with reinforcement. Findings are tabulated and shown in illustrative charts, and conclusions are made.

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.