• Title/Summary/Keyword: Finite Elements in Time

Search Result 399, Processing Time 0.022 seconds

An Analysis of TX/RX Microstrip Single Element using FDTD at Ku-band and 8X4 Array Antenna (FDTD 방법을 이용한 Ku 대역 송수신 겸용 마이크로스트립 단일 소자 해석 및 8X4 배열 안테나)

  • 윤재승;전순익
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.830-838
    • /
    • 2003
  • In this paper, TX/RX dual operation microstrip single antenna for satellite communication is designed, analyzed, fabricated and measured. TX/RX frequency ranges are 14.0∼l4.5 GHz, 11.7∼12.75 GHz in respectively and vertical and horizontal polarizations are used for TX and RX. This antenna uses microstrip direct feeding for RX and aperture coupled strip-line feeding for TX and accommodates stacked elements for a high directivity and wide impedance bandwidth. In an analysis of single element, FDTD and MOM was compared and FDTD analysis was more accurate because of the consideration of finite structure and imperfect two ground planes. The proposed structure facilitates generally to an extension of two dimensional array and lower an unwanted radiation by strip-line feed in TX. TX/RX 8${\times}$4 array has a return loss below -10 dB, -14 dB in TX, RX respectively and a gain ranging from 19.1∼20.7 dB in TX, 21.2∼21.8 dB in RX which has a radiation efficiency of 43∼5l %, 52∼57 %.

Alternative reliability-based methodology for evaluation of structures excited by earthquakes

  • Gaxiola-Camacho, J. Ramon;Haldar, Achintya;Reyes-Salazar, Alfredo;Valenzuela-Beltran, Federico;Vazquez-Becerra, G. Esteban;Vazquez-Hernandez, A. Omar
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.361-377
    • /
    • 2018
  • In this paper, an alternative reliability-based methodology is developed and implemented on the safety evaluation of structures subjected to seismic loading. To effectively elaborate the approach, structures are represented by finite elements and seismic loading is applied in time domain. The accuracy of the proposed reliability-based methodology is verified using Monte Carlo Simulation. It is confirmed that the presented approach provides adequate accuracy in calculating structural reliability. The efficiency and robustness in problems related to performance-based seismic design are verified. A structure designed by experts satisfying all post-Northridge seismic design requirements is studied. Rigidities related to beam-to-column connections are incorporated. The structure is excited by three suites of ground motions representing three performance levels: immediate occupancy, life safety, and collapse prevention. Using this methodology, it is demonstrated that only hundreds of deterministic finite element analyses are required for extracting reliability information. Several advantages are documented with respect to Monte Carlo Simulation. To showcase an applicability extension of the proposed reliability-based methodology, structural risk is calculated using simulated ground motions generated via the broadband platform developed by the Southern California Earthquake Center. It is validated the accuracy of the broadband platform in terms of structural reliability. Based on the results documented in this paper, a very solid, sound, and precise reliability-based methodology is proved to be acceptable for safety evaluation of structures excited by seismic loading.

Dynamic Response Analysis of Nonlinear Sloshing in Two Dimensional Rectangular Tank using Finite Element Method (유한요소법을 이용한 2차원 사각탱크내 비선형 슬로싱 동응답 해석)

  • 조진래;이홍우;하세윤;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • This paper deals with the FEM analysis of nonlinear sloshing of incompressible, invicid and irrotational flow in two dimensional rectangular tank. We use laplace equation based on potential theory as governing equation. For large amplitude sloshing motion, kinematic and dynamic free surface conditions derived from Bernoulli equation are applied. This problem is solved by FEM using 9-node elements. For the time integration and accurate velocity calculation, we introduce predictor-corrector time marching scheme and least square method. Also, numerical stability in tracking of free surface is obtained by direct calculation of free surface location to time variation. Numerical results of sloshing induced by harmonic excitations, while comparing with those of linear theory and references, prove the accuracy and stability. After verification of our program, we analyze sloshing response characteristics to the fluid height and the excitation amplitude.

Ductility-based design approach of tall buildings under wind loads

  • Elezaby, Fouad;Damatty, Ashraf El
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • The wind design of buildings is typically based on strength provisions under ultimate loads. This is unlike the ductility-based approach used in seismic design, which allows inelastic actions to take place in the structure under extreme seismic events. This research investigates the application of a similar concept in wind engineering. In seismic design, the elastic forces resulting from an extreme event of high return period are reduced by a load reduction factor chosen by the designer and accordingly a certain ductility capacity needs to be achieved by the structure. Two reasons have triggered the investigation of this ductility-based concept under wind loads. Firstly, there is a trend in the design codes to increase the return period used in wind design approaching the large return period used in seismic design. Secondly, the structure always possesses a certain level of ductility that the wind design does not benefit from. Many technical issues arise when applying a ductility-based approach under wind loads. The use of reduced design loads will lead to the design of a more flexible structure with larger natural periods. While this might be beneficial for seismic response, it is not necessarily the case for the wind response, where increasing the flexibility is expected to increase the fluctuating response. This particular issue is examined by considering a case study of a sixty-five-story high-rise building previously tested at the Boundary Layer Wind Tunnel Laboratory at the University of Western Ontario using a pressure model. A three-dimensional finite element model is developed for the building. The wind pressures from the tested rigid model are applied to the finite element model and a time history dynamic analysis is conducted. The time history variation of the straining actions on various structure elements of the building are evaluated and decomposed into mean, background and fluctuating components. A reduction factor is applied to the fluctuating components and a modified time history response of the straining actions is calculated. The building components are redesigned under this set of reduced straining actions and its fundamental period is then evaluated. A new set of loads is calculated based on the modified period and is compared to the set of loads associated with the original structure. This is followed by non-linear static pushover analysis conducted individually on each shear wall module after redesigning these walls. The ductility demand of shear walls with reduced cross sections is assessed to justify the application of the load reduction factor "R".

Fracture behaviors of tunnel lining caused by multi-factors: A case study

  • Zhao, Yiding;Zhang, Yongxing;Yang, Junsheng
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.269-276
    • /
    • 2019
  • The cracking and spalling caused by fracture of concrete lining have adverse impacts on serviceability and durability of the tunnel, and the subsequent maintenance work for damaged structure needs to be specific to the damaging causes. In this paper, a particular case study of an operational tunnel structure is presented for the serious cracking and spalling behaviours of concrete lining, focusing on the multi-factors inducing lining failure. An integrated field investigation is implemented to characterize the spatial distribution of damages and detailed site situations. According to results of nondestructive inspection, insufficient lining thickness and cavity behind lining are the coupled-inducement of lining failure bahaviors. To further understanding of the lining structure performance influenced by these multiple construction deficiencies, a reliable numerical simulation based on extended finite element method (XFEM) is performed by using the finite element software. The numerical model with 112 m longitudinal calculation, 100 m vertical calculation and 43 m vertical depth, and the concrete lining with 1450 solid elements are set enrichment shape function for the aim of simulating cracking behavior. The numerical simulation responses are essentially in accordance with the actual lining damaging forms, especially including a complete evolutionary process of lining spalling. This work demonstrates that the serious lining damaging behaviors are directly caused by a combination of insufficient thickness lining and cavity around the surrounding rocks. Ultimately, specific maintenance work is design based on the construction deficiencies, and that is confirmed as an efficient, time-saving and safe maintenance method in the operational railway tunnel.

Bending and free vibration analysis of laminated piezoelectric composite plates

  • Zhang, Pengchong;Qi, Chengzhi;Fang, Hongyuan;Sun, Xu
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.747-769
    • /
    • 2020
  • This paper provides a semi-analytical approach to investigate the variations of 3D displacement components, electric potential, stresses, electric displacements and transverse vibration frequencies in laminated piezoelectric composite plates based on the scaled boundary finite element method (SBFEM) and the precise integration algorithm (PIA). The proposed approach can analyze the static and dynamic responses of multilayered piezoelectric plates with any number of laminae, various geometrical shapes, boundary conditions, thickness-to-length ratios and stacking sequences. Only a longitudinal surface of the plate is discretized into 2D elements, which helps to improve the computational efficiency. Comparing with plate theories and other numerical methods, only three displacement components and the electric potential are set as the basic unknown variables and can be represented analytically through the transverse direction. The whole derivation is built upon the three dimensional key equations of elasticity for the piezoelectric materials and no assumptions on the plate kinematics have been taken. By virtue of the equilibrium equations, the constitutive relations and the introduced set of scaled boundary coordinates, three-dimensional governing partial differential equations are converted into the second order ordinary differential matrix equation. Furthermore, aided by the introduced internal nodal force, a first order ordinary differential equation is obtained with its general solution in the form of a matrix exponent. To further improve the accuracy of the matrix exponent in the SBFEM, the PIA is employed to make sure any desired accuracy of the mechanical and electric variables. By virtue of the kinetic energy technique, the global mass matrix of the composite plates constituted by piezoelectric laminae is constructed for the first time based on the SBFEM. Finally, comparisons with the exact solutions and available results are made to confirm the accuracy and effectiveness of the developed methodology. What's more, the effect of boundary conditions, thickness-to-length ratios and stacking sequences of laminae on the distributions of natural frequencies, mechanical and electric fields in laminated piezoelectric composite plates is evaluated.

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

Analysis of Strength and Displacement of Jig Body in Index Machine (Index Machine의 Jig Body 강도 및 변위해석)

  • 한근조;오세욱;김광영;안성찬;전형용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.24-30
    • /
    • 1998
  • Strength and displacement of jig body in index machine utilized for multiprocess machining such as drilling, boring and tapping, etc, at the same time were analyzed by the use of finite element analysis soft ware ANSYS 5.2A. The whole geometry was constructed by 4048 elements and 7016 nodes employing 8 node brick element. The analyses were carried out on five loading cases combining vertical and horizontal machining to simulate the case occurring large displacement and the one occurring small displacement one and provided following conclusions. (1) Jig body had sufficient strength because its safety factor was 6.95 even in the most severe loading case. (2) The largest displacement in Z direction was 549 m and that in radial direction was 43.7 m. (3) In order to reduce the displacement, vertical machining rather than horizontal or two or three processes should be adopted in the same station. (4) Alternate change of horizontal machining direction at consecutive stations can reduce the displace ment. (5) The dimension of the slider should be increased to reduce the displacement by the tolerance in the sliding part. (6) A bypass idle piston head needs to be installed to give a counterpart supporting load from opposite direction for a single horizontal machining case.

  • PDF

Lumped Parameter Model for the Nonlinear Seismic Analysis of the Coupled Dam-Reservior-Soil System (댐-호소-지반 계의 비선형 지진응답해석을 위한 집중변수모델)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.267-274
    • /
    • 1999
  • Since the seismic response of dams can be strongly influenced by the dam-reservior interaction in needs to be taken into account in the seismic design of dams. In general a substructure method is employed to solve the dam-reservoir interaction problem in which the dam body is modeled with finite elements and the infinite region of a reservoir using a transmitting boundary. When the water is modeled as a compressible fluid the equation is formulated in frequency domain. But nonlinear behavior of dam body cannot be studied easily in the frequency domain method. In this study time domain formulation of the dam-reservoir-soil interaction is proposed based onthe lumped parameter modeling of the reservoir region, The frequency dependent dynamic-stiffness coefficients of the reservoir are converted into frequency independent lumped-parameters such as masses dampers and springs. The soil-structure interactionis modeled using lumped parameters in similar way. the ground is assumed as a visco-elastic stratum on the rigid bedrock. The dynamic stiffnesses of the rigid surface foundation are calculated using the hyperelement method and are converted into lumped parameters. The application example demonstrated that the lumped parameter model gives almost identical results with the frequency domain formulation.

  • PDF

The length of plastic hinge area in the flanged reinforced concrete shear walls subjected to earthquake ground motions

  • Bafti, Farzad Ghaderi;Mortezaei, Alireza;Kheyroddin, Ali
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.651-665
    • /
    • 2019
  • Past earthquakes have shown that appropriately designed and detailed buildings with shear walls have great performance such a way that a considerable portion of inelastic energy dissipation occurs in these structural elements. A plastic hinge is fundamentally an energy diminishing means which decrease seismic input energy through the inelastic deformation. Plastic hinge development in a RC shear wall in the areas which have plastic behavior depends on the ground motions characteristics as well as shear wall details. One of the most generally used forms of structural walls is flanged RC wall. Because of the flanges, these types of shear walls have large in-plane and out-of-plane stiffness and develop high shear stresses. Hence, the purpose of this paper is to evaluate the main characteristics of these structural components and provide a more comprehensive expression of plastic hinge length in the application of performance-based seismic design method and promote the development of seismic design codes for shear walls. In this regard, the effects of axial load level, wall height, wall web and flange length, as well as various features of earthquakes, are examined numerically by finite element methods and the outcomes are compared with consistent experimental data. Based on the results, a new expression is developed which can be utilized to determine the length of plastic hinge area in the flanged RC shear walls.