• 제목/요약/키워드: Finite Element simulation

검색결과 3,332건 처리시간 0.026초

피에조콘 시험의 유한요소 해석 II (Finite Element Analysis of Piezocone Test II)

  • 김대규;김낙경
    • 한국지반공학회논문집
    • /
    • 제16권4호
    • /
    • pp.191-199
    • /
    • 2000
  • 본 연구에서는 피에조콘 시험의 유한요소해석을 수행하였다. 이를 위하여 점탄소성 bounding surface 모델, 가상일의 방정식(virtual work equation) 및 theory of mixtures를 Updated Lagrangian reference frame에서 formulation하였다. 결과적으로 구성된 유한요소 formulation을 컴퓨터 프로그래밍 하였으며 유한요소해석에서 얻은 콘 저항치, 과잉간극수압 및 간극수압소산 등의 결과를 실험치와 비교 분석하였으며 피에조콘 주변의 응력, 변형율 및 과잉간극수압의 contour를 유한요소해석에서 구하여 이를 고찰하였다. 비등방성 및 점성이 추가된 구성모델을 사용함으로서 응력의 비등방성 및 관입속도를 효과적으로 simulation할 수 있었다. 유한요소 Formulation 과정은 'I' 결과는 'II'에서 설명된다.

  • PDF

Perturbation Based Stochastic Finite Element Analysis of the Structural Systems with Composite Sections under Earthquake Forces

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • 제8권2호
    • /
    • pp.129-144
    • /
    • 2008
  • This paper demonstrates an application of the perturbation based stochastic finite element method (SFEM) for predicting the performance of structural systems made of composite sections with random material properties. The composite member consists of materials in contact each of which can surround a finite number of inclusions. The perturbation based stochastic finite element analysis can provide probabilistic behavior of a structure, only the first two moments of random variables need to be known, and should therefore be suitable as an alternative to Monte Carlo simulation (MCS) for realizing structural analysis. A summary of stiffness matrix formulation of composite systems and perturbation based stochastic finite element dynamic analysis formulation of structural systems made of composite sections is given. Two numerical examples are presented to illustrate the method. During stochastic analysis, displacements and sectional forces of composite systems are obtained from perturbation and Monte Carlo methods by changing elastic modulus as random variable. The results imply that perturbation based SFEM method gives close results to MCS method and it can be used instead of MCS method, especially, if computational cost is taken into consideration.

고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법 (A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow)

  • 이석원;윤재륜
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

세장비가 큰 다단계 초정밀 사각형 디프드로잉을 위한 블랭크 설계 (Blank Design in Multi-Stage Rectangular Deep Drawing of Extreme Aspect Ratio)

  • 박철성;구태완;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.258-261
    • /
    • 2003
  • In this study, finite element analysis for multi-stage deep drawing process of rectangular configuration with extreme aspect ratio is carried out especially for the blank design. The analysis of rectangular deep drawing process with extreme aspect ratio is likewise very difficult with respect to the design process parameters including the intermediate die profile. In order to solve the difficulties, numerical approach using finite element method is performed in the present analysis and design. A series of experiments for multi-stage rectangular deep drawing process are conducted and the deformed configuration is investigated by comparing with the results of the finite element analysis. Additionally, to minimize amount of removal material after trimming process, finite element simulation is applied for the blank modification. The analysis incorporates brick elements for a rigid-plastic finite element method with an explicit time integration scheme using LS-DYNA3D.

  • PDF

FRP 기둥 재킷 시스템이 보강된 지진 취약 철근콘크리트 건축물의 유한요소해석 (Finite Element Analyses of Seismically Vulnerable Reinforced Concrete Building Frame Retrofitted Using FRP Column Jacketing System)

  • 신지욱;이상열;지동현
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.57-66
    • /
    • 2021
  • This study develops finite element models for seismically-deficient reinforced concrete building frame retrofitted using fiber-reinforced polymer jacketing system and validates the finite element models with full-scale dynamic test for as-built and retrofitted conditions. The bond-slip effects measured from a past experimental study were modeled using one-dimensional slide line model, and the bond-slip models were implemented to the finite element models. The finite element model can predict story displacement and inter-story drift ratio with slight simulation variation compared to the measured responses from the full-scale dynamic tests.

Validation of Efficient Welding Technique to Reduce Welding Displacements of Ships using the Elastic Finite Element Method

  • Woo, Donghan
    • 해양환경안전학회지
    • /
    • 제26권3호
    • /
    • pp.254-261
    • /
    • 2020
  • Welding is the most convenient method for fabricating steel materials to build ships and of shore structures. However, welding using high heat processes inevitably produces welding displacements on welded structures. To mitigate these, heavy industries introduce various welding techniques such as back-step welding and skip-step welding. These techniques effect on the change of the distribution of high heat on welded structures, leading to a reduction of welding displacements. In the present study, various cases using different and newly introduced welding techniques are numerically simulated to ascertain the most efficient technique to minimize welding displacements. A numerical simulation using a finite element method based on the inherent strain, interface element and multi-point constraint function is introduced herein. Based on several simulation results, the optimal welding technique for minimizing welding displacements to build a general ship grillage structure is finally proposed.

연속체 손상역학에 따른 구조재료의 유한요소해석 (Finite element analysis of the structural material by the theory of continuum damage mechanics)

  • 김승조;김위대
    • 오토저널
    • /
    • 제13권3호
    • /
    • pp.58-67
    • /
    • 1991
  • A theory of continuum damage mechanics based on the theory of materials of type N was developed and its nonlinear finite element approximation and numerical simulation was carried out. To solve the finite elastoplasticity problems, reasonable kinematics of large deformed solids was introduced and constitutive relations based on the theory of materials of type-N were derived. These highly nonlinear equations were reduced to the incremental weak formulation and approximated by the theory of nonlinear finite element method. Two types of problems, compression moulding problem and pure bending problem, were solved for aluminum 2024.

  • PDF

삼차원 소성가공 공정 시뮬레이션을 위한 지능형 사면체 요소망 자동생성 (AUTOMATED ADAPTIVE TETRAHEDRAL ELEMENT GENERATION FOR THREE-DIMENSIONAL METAL FORMING SIMULATION)

  • 이민철;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.203-208
    • /
    • 2005
  • In this paper, an automated adaptive mesh generation scheme, based on an advancing-front-Delaunay method, is developed for finite element simulation of three dimensional bulk metal forming processes. During the simulation, the finite element mesh system is adaptively remeshed whenever the mesh is unacceptable. Several schemes are developed such as curvature compensation scheme to minimize volume loss, optimal smoothing scheme to improve element quality, etc. The presented approach is evaluated and applied to automatic forging simulation in order to demonstrate the effect of the developed schemes.

  • PDF

유한요소 역해석을 이용한 복잡한 자동차 판넬의 트리밍 라인 설계 (Trimming Line Design of Auto-body Panel with Complex Shape Using Finite Element Inverse Method)

  • 송윤준;한영호;박춘달;정완진
    • 소성∙가공
    • /
    • 제15권6호
    • /
    • pp.459-466
    • /
    • 2006
  • Trimming line design plays an important role in obtaining accurate edge profile after flanging. Compared to the traditional section-based method, simulation-based method can produce more accurate trimming line by considering deformation mechanics. Recently, the use of a finite element inverse method is proposed to obtain optimal trimming line. By analyzing flanging inversely from the final mesh after flanging, trimming line can be obtained from initial mesh on the drawing die surface. Initial guess generation fer finite element inverse method is obtained by developing the final mesh onto drawing tool mesh. Incremental development method is adopted to handle irregular mesh with various size and undercut. In this study, improved incremental development algorithm to handle complex shape is suggested. When developing the final mesh layer by layer, the algorithm which can define the development sequence and the position of developing nodes is thoroughly described. Flanging of front fender is analyzed to demonstrate the effectiveness of the present method. By using section-based trimming line and simulation-based trimming line, incremental finite element simulations are carried out. In comparison with experiment, it is clearly shown that the present method yields more accurate edge profile than section-based method.