• 제목/요약/키워드: Finite Element analysis

검색결과 16,757건 처리시간 0.042초

Advanced Design Environmental With Adaptive And Knowledge-Based Finite Elements

  • Haghighi, Kamyar;Jang, Eun
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1222-1229
    • /
    • 1993
  • An advanced design environment , which is based on adaptive and knowledge -based finite elements (INTELMESH), has been developed. Unlike other approaches, INTEMMESH incorporates the information about the object geometry as well as the boundary and loading conditions to generate an ${\alpha}$-priori finite element mesh which is more refined around the critical regions of the problem domain. INTEMMESH is designed for planar domains and axisymmetric 3-D structures of elasticity and heat transfer subjected to mechanical and thermal loading . It intelligently identifies the critical regions/points in the problem domain and utilize the new concepts of substructuring and wave propagation to choose the proper mesh size for them. INTEMMESH generates well-shaped triangular elements by applying trangulartion and Laplacian smoothing procedures. The adaptive analysis involves the intial finite elements analyze and an efficient ${\alpha}$-posteriori error analysis involves the initial finite element anal sis and an efficient ${\alpha}$-posteriori error analysis and estimation . Once a problem is defined , the system automatically builds a finite element model and analyzes the problem though automatic iterative process until the error reaches a desired level. It has been shown that the proposed approach which initiates the process with an ${\alpha}$-priori, and near optimum mesh of the object , converges to the desired accuracy in less time and at less cost. Such an advanced design/analysis environment will provide the capability for rapid product development and reducing the design cycle time and cost.

  • PDF

The construction of second generation wavelet-based multivariable finite elements for multiscale analysis of beam problems

  • Wang, Youming;Wu, Qing;Wang, Wenqing
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.679-695
    • /
    • 2014
  • A design method of second generation wavelet (SGW)-based multivariable finite elements is proposed for static and vibration beam analysis. An important property of SGWs is that they can be custom designed by selecting appropriate lifting coefficients depending on the application. The SGW-based multivariable finite element equations of static and vibration analysis of beam problems with two and three kinds of variables are derived based on the generalized variational principles. Compared to classical finite element method (FEM), the second generation wavelet-based multivariable finite element method (SGW-MFEM) combines the advantages of high approximation performance of the SGW method and independent solution of field functions of the MFEM. A multiscale algorithm for SGW-MFEM is presented to solve structural engineering problems. Numerical examples demonstrate the proposed method is a flexible and accurate method in static and vibration beam analysis.

Vibration Analysis of HDD Actuator with Equivalent Finite Element Model of VCM Coil

  • Kim, Dong-Woohn;Lee, Jin-Koo;Park, No-Cheol;Park, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.679-690
    • /
    • 2003
  • As the rate of increase in areal density of the HDD has accelerated, dynamic characteristics of the HDD actuator need to be improved with respect to the performance of the tracking servo and shock transmission. Therefore, it is important to analyze the vibration characteristic of the HDD actuator that consists of the VCM part, E-block and pivot bearing. In this paper, vibration modes of the HDD actuator are investigated the using finite element and experimental modal analyses methods. To develop a detailed finite element model, finite element models of each components of the actuator assembly are constructed and tuned to the results of the EMA. The VCM coil is modeled as an equivalent finite element model that has an orthotropic material property using auto-model updating program. Auto-model updating program with improved sensitivity based iterative method is applied to build a detailed finite element model using the result of the EMA. A detailed finite element model of the HDD actuator is then constructed and analyzed.

3차원 공간 판구조물의 유한요소 해석에 관한 연구 (A Study on the Finite Element Analysis of Three Dimensional Plate Structures)

  • 권오영;남정길
    • 수산해양기술연구
    • /
    • 제35권1호
    • /
    • pp.54-59
    • /
    • 1999
  • High-speed electronic digital computers have enabled engineers to employ various numerical discretization techniques for solutions of complex problems. The Finite Element Method is one of the such technique. The Finite Element Method is one of the numerical analysis based on the concepts of fundamental mathematical approximation. Three dimensional plate structures used often in partition of ship, box girder and frame are analyzed by Finite Element Method. In design of structures, the static deflections, stress concentrations and dynamic deflections must be considered. However, these problem belong to geometrically nonlinear mechanical structure analysis. The analysis of each element is independent, but coupling occurs in assembly process of elements. So, to overcome such a difficulty the shell theory which includes transformation matrix and a fictitious rotational stiffness is taken into account. Also, the Mindlin's theory which is considered the effect of shear deformation is used. The Mindlin's theory is based on assumption that the normal to the midsurface before deformation is "not necessarily normal to the midsurface after deformation", and is more powerful than Kirchoff's theory in thick plate analysis. To ensure that a small number of element can represent a relatively complex form of the type which is liable to occur in real, rather than in academic problem, eight-node quadratic isoparametric elements are used. are used.

  • PDF

고강도강 자동차 부품의 롤 성형 공정의 탄소성 유한요소해석 (Elastic-Plastic Finite Element Analysis of the Roll Forming Process for an Automotive Part of High Strength Steel)

  • 김광희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.480-483
    • /
    • 2005
  • A roll forming process is developed for an automotive part of high strength steel. Forming rolls are designed through the plane strain elastic-plastic finite element analysis to estimate the springback. It is assumed that the process can be approximated as a series of multi-step bending processes. Then the 3D elastic-plastic finite element analysis with the solid element is carried out for the designed roll forming process. The prototype roll forming machine and the forming rolls are made and the experiments are carried out. The results of the analysis and the experiments are compared.

  • PDF

초경공구 성형을 위한 금형압축공정 (Finite Element Analysis for Die Compaction Process of Cemented Carbide Tool Parts)

  • 현충민;권영삼;정석환;김명진;하상렬;김기태
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1140-1151
    • /
    • 2004
  • This paper reports on the finite elements analysis for die compaction process of cemented carbide tool parts. Experimental data were obtained under die compaction and triaxial compression with various loading conditions. The elastoplastic constitutive equations based on the yield function of Shima and Oyane were implemented into an explicit finite element program (ABAQUS/Explicit) and implicit finite element program (PMsolver/Compaction-3D) to simulate compaction response of cemented carbide powder during die compaction. For simulation of die compaction, the material parameters for Shima and Oyane model were obtained by uniaxial die compaction test. Explicit finite element results were compared with implicit results for cemented carbide powder.

고세장비 항공기의 모드 시험 및 동특성 유한요소모델 개선 (Modal Test and Finite Element Model Update of Aircraft with High Aspect Ratio Wings)

  • 김상용
    • 한국소음진동공학회논문집
    • /
    • 제22권5호
    • /
    • pp.480-488
    • /
    • 2012
  • The aircrafts with high aspect ratio wings made by a composite material have been developed, which enable high energy efficiency and long-term flight by reducing air resistance and structural weight. However, they have difficulties in securing the aeroelastic stability such as the flutter because of their long and flexible wings. The flutter is unstable self-excited-vibration caused by interaction between the structural dynamics and the aerodynamics. It should be verified analytically prior to first flight test that the flutter does not happen in the range of flight mission. Normally, the finite element model is used for the flutter analysis. So it is important to construct the finite element model representing dynamic characteristics similar to those of a real aircraft. Accordingly, in this research, to acquire dynamic characteristics experimentally the modal test of the aircraft with high aspect ratio composite wings was conducted. And then the modal parameters from the finite element analysis(FEA) were compared with those from the modal test. To make analysis results closer to test results, the finite element model was updated by means of the sensitivity analysis on variables and the optimization. Finally, it was proved that the updated finite element model is reliable as compared with the results of the modal test.

Efficient finite element model for dynamic analysis of laminated composite beam

  • Naushad Alam, M.;Upadhyay, Nirbhay Kr.;Anas, Mohd.
    • Structural Engineering and Mechanics
    • /
    • 제42권4호
    • /
    • pp.471-488
    • /
    • 2012
  • An efficient one dimensional finite element model has been presented for the dynamic analysis of composite laminated beams, using the efficient layerwise zigzag theory. To meet the convergence requirements for the weak integral formulation, cubic Hermite interpolation is used for the transverse displacement ($w_0$), and linear interpolation is used for the axial displacement ($u_0$) and shear rotation (${\psi}_0$). Each node of an element has four degrees of freedom. The expressions of variationally consistent inertia, stiffness matrices and the load vector are derived in closed form using exact integration. The formulation is validated by comparing the results with the 2D-FE results for composite symmetric and sandwich beams with various end conditions. The employed finite element model is free of shear locking. The present zigzag finite element results for natural frequencies, mode shapes of cantilever and clamped-clamped beams are obtained with a one-dimensional finite element codes developed in MATLAB. These 1D-FE results for cantilever and clamped beams are compared with the 2D-FE results obtained using ABAQUS to show the accuracy of the developed MATLAB code, for zigzag theory for these boundary conditions. This comparison establishes the accuracy of zigzag finite element analysis for dynamic response under given boundary conditions.

유한요소법을 이용한 이방성 재료에서의 초음파 전파 거동 해석 (Finite Element Analysis of Ultrasonic Wave Propagation in Anisotropic Materials)

  • 정현조;박문철
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2201-2210
    • /
    • 2002
  • The accurate analysis of ultrasonic wave propagation and scattering plays an important role in many aspects of nondestructive evaluation. A numerical analysis makes it possible to perform parametric studies, and in this way the probability of detection and reliability of test results can be improved. In this paper, a finite element method was employed for the analysis of ultrasonic wave propagation in anisotropic materials, and the accuracy of results was checked by comparing with analytical predictions. The element size and the integral time step, which are the critical components for the convergence of finite element solutions, were determined using a commercial finite element code. Some differences for wave propagation in anisotropic media were illustrated when plane waves are propagating in a unidirectionally reinforced composite materials. When plane waves are propagating in nonsymmetric directions in a symmetric plane, deviation angles between the wave vector and the energy vector were found from finite element analyses and the results agreed well with analytical calculations.

Three Dimensional Finite Element Analysis for Piezoelectric Transformer

  • Joo, Hyun-Woo;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권3호
    • /
    • pp.98-103
    • /
    • 2001
  • This paper presents the numerical analysis of piezoelectric devices using three-dimensional finite element analysis. The characteristic of piezoelectric transducer, such as mechanical displacement and electrical are analyzed and the validity is confirmed by experiments Applying the finite element routine to a piezoelectric transformer, the resonance features electrical impedance. the ratio of step-up voltage and vibration mode of piezoelectric transformer are calculated numerically By using three-dimensional finite element method effects of width variation to resonance features, electrical input impedance and the voltage step-up ratio for a piezoelectric transformer, can be considered in design procedure.