• 제목/요약/키워드: Finite Element Modeling

검색결과 2,160건 처리시간 0.028초

A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities

  • Yoon, Kyungho;Lee, Youngyu;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • 제43권4호
    • /
    • pp.411-437
    • /
    • 2012
  • In this paper, we propose a continuum mechanics based 3-D beam finite element with cross-sectional discretization allowing for warping displacements. The beam element is directly derived from the assemblage of 3-D solid elements, and this approach results in inherently advanced modeling capabilities of the beam element. In the beam formulation, warping is fully coupled with bending, shearing, and stretching. Consequently, the proposed beam elements can consider free and constrained warping conditions, eccentricities, curved geometries, varying sections, as well as arbitrary cross-sections (including thin/thick-walled, open/closed, and single/multi-cell cross-sections). We then study the modeling and predictive capabilities of the beam elements in twisting beam problems according to geometries, boundary conditions, and cross-sectional meshes. The results are compared with reference solutions obtained by analytical methods and solid and shell finite element models. Excellent modeling capabilities and solution accuracy of the proposed beam element are observed.

Finite element modeling of slab-on-beam concrete bridge superstructures

  • Patrick, Michael D.;Huo, X. Sharon
    • Computers and Concrete
    • /
    • 제1권3호
    • /
    • pp.355-369
    • /
    • 2004
  • This paper presents a study of four finite element techniques that can be used to model slabon-beam highway bridges. The feasibility and correctness of each modeling technique are examined by applying them to a prestressed concrete I-beam bridge and a prestressed concrete box-beam bridge. Other issues related to bridge modeling such as torsional constant, support conditions, and quality control check are studied in detail and discussed in the paper. It is found that, under truck loading, the bending stress distribution in a beam section depends on the modeling technique being utilized. It is observed that the behavior of the bridge superstructure can be better represented when accounting for composite behavior between the supporting beams and slab.

자동차 외판 플랜징/헤밍 공정에 대한 유한요소해석 모델링 (Finite Element Modeling of Flanging/Hemming Process for Automotive Panels)

  • 김헌영;임희택;최광용;이우홍;박춘달
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.103-107
    • /
    • 2002
  • The 2nd forming process of flanging/hemming has recently many interest because it determines external quality of automobile. It is difficult to apply finite element simulation in flanging/hemming due to small element size which needs for expression of bending effect on the die corner and big model size of side door, back door, tank lid and like opening Parts. This paper shows the process of flanging/hemming simulation using finite element model for automotive panels. The explicit finite element program PAM-STAMP$\^$TM/ was used to simulate the flanging and hemming operations.

  • PDF

MRI 데이터를 이용한 쥐의 경추와 인접한 조직의 유한요소 모델화 (Finite Element Modeling of the Rat Cervical Spine and Adjacent Tissues from MRI Data)

  • 정태은
    • 한국CDE학회논문집
    • /
    • 제17권6호
    • /
    • pp.436-442
    • /
    • 2012
  • Traumatic loading during car accidents or sports activities can lead to cervical spinal cord injury. Experiments in spinal cord injury research are mainly carried out on rabbit or rat. Finite element models that include the rat cervical spinal cord and adjacent soft tissues should be developed for efficient studies of mechanisms of spinal cord injury. Images of a rat were obtained from high resolution MRI scanner. Polygonal surfaces were extracted structure by structure from the MRI data using the ITK-SNAP volume segmentation software. These surfaces were converted to Non-uniform Rational B-spline surfaces by the INUS Rapidform rapid prototyping software. Rapidform was also used to generate a thin shell surface model for the dura mater which sheathes the spinal cord. Altair's Hypermesh pre-processor was used to generate finite element meshes for each structure. These processes in this study can be utilized in modeling of other biomedical tissues and can be one of examples for reverse engineering on biomechanics.

PSC보 교량의 유한요소 모델링방법에 관한 연구 (An Improved Finite Element Modeling Technique for Prestressed Concrete Girder Bridges)

  • 김광수;박선규;김형열
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.33-40
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity of partially prestressed concrete girder bridges. Based on the finite element method of analysis, shell and frame elements are used to model the slab and girders of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab an mid-plane of girder. This paper also includes the comparision of three different equations that are used in the calculation of effective moment of inertia for the partially prestressed concrete girders. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. A good agreement is achieved between the numerical solutions by using the proposed method load test results.

다단 보 구조에서의 티모센코 보 유한요소 모델링 오차분석 및 개선 (Error Analysis and Improvement of the Timoshenko Beam based Finite Element Model for Multi-Stepped Beam Structures)

  • 홍성욱;이용덕;김만달
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.199-207
    • /
    • 2003
  • The Timoshenko beam model has been known as the most accurate model for representing beam structures. However, the Timoshenko beam model may give rise to a significant error when it is applied to multi-stepped beam structures. This paper is intended to demonstrate the modeling error of Timoshenko beam based finite element model for multi-stepped beam structures and to suggest a new modeling method to improve the accuracy. A tentative bending spring is introduced into the stepped section to represent the softening effect due to the presence of step. This paper also proposes a finite element modeling method in the light with the tentative bending spring model for the step softening effect. The proposed method rigorously adapts computation results from a commercial finite element code. The validity of the proposed method is demonstrated through a series of simulation and experiment.

3차원 유한요소해석을 이용한 엘보우의 감육 결함 특성 평가 (Evaluation on Failure Characteristics of the Local Wall Thinning Elbows Using Three Dimensional Finite Element Analysis)

  • 김태순;박치용;김진원;박재학
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.39-45
    • /
    • 2003
  • The failure mode of a pipe due to local wall thinning is increasingly more attention in the nuclear power plant industry. To assess the integrity of locally wall thinned pipe, it is necessary to perform many simulations under various conditions. Because the modeling for locally wall thinned elbow is more complicated than that of straight pipe the efficient modeling method for finite element analysis is necessary. In this study, the more simple efficient modeling method of three-dimensional finite element analysis for locally wall thinned elbow has been suggested and verified. And using the method, the failure mode of local wall thinned elbows that have different thinning lengths and circumferential angles is evaluated. From the results, we concluded that the collapse load of elbows has been decreased by the increase of wall thinning shape factors such as thinning lengths and circumferential angles.

엄밀한 동적 요소와 유한 요소 통합 해석 방법에 관한 연구 (A Study on the Combined Use of Exact Dynamic Elements and Finite Elements)

  • 홍성욱;조용주;김종선
    • 한국소음진동공학회논문집
    • /
    • 제12권2호
    • /
    • pp.141-149
    • /
    • 2002
  • Although the finite element method has become an indispensible tool for the dynamic analysis of structures, difficulty remains to quantify the errors associated with discretization. To improve the modeling accuracy, this paper proposes a method to make a combined use of finite elements and exact dynamic elements. Exact interpolation functions for the Timoshenko beam element are derived using the exact dynamic element modeling (EDEM) and compared with interpolation functions of the finite element method (FEM). The exact interpolation functions are tested with the Laplace variable varied. A combined use of finite element method and exact interpolation functions is presented to gain more accurate mode shape functions. This paper also presents a combined use of finite elements and exact dynamic elements in design/reanalysis problems. Timoshenko flames with tapered sections are tested to demonstrate the design procedure with the proposed method. The numerical study shows that the combined use of finite element model and exact dynamic element model is very useful.

Control of free vibration with piezoelectric materials: Finite element modeling based on Timoshenko beam theory

  • Song, Myung-Kwan;Noh, Hyuk-Chun;Kim, Sun-Hoon;Han, In-Seon
    • Structural Engineering and Mechanics
    • /
    • 제19권5호
    • /
    • pp.477-501
    • /
    • 2005
  • In this study, a new smart beam finite element is proposed for the finite element modeling of beam-type smart structures that are equipped with bonded plate-type piezoelectric sensors and actuators. Constitutive equations for the direct piezoelectric effect and converse piezoelectric effect of piezoelectric materials are considered in the formulation. By using a variational principle, the equations of motion for the smart beam finite element are derived. The proposed 2-node beam finite element is an isoparametric element based on Timoshenko beam theory. The proposed smart beam finite element is applied to the free vibration control adopting a constant gain feedback scheme. The electrical force vector, which is obtained in deriving an equation of motion, is the control force equivalent to that in existing literature. Validity of the proposed element is shown through comparing the analytical results of the verification examples with those of other previous researchers. With the use of smart beam finite elements, simulation of free vibration control is demonstrated by sensing the voltage of the piezoelectric sensors and by applying the voltages to the piezoelectric actuators.

선박 장비 받침대의 동강성 평가를 위한 유한요소 모델링과 해석 인자에 관한 연구 (A Study on the Finite Element Modeling and Analytical Parameters for the Dynamic Stiffness Evaluation of Shipboard Equipment Foundations)

  • 김국현;김윤환;최태묵;최성원;조대승
    • 대한조선학회논문집
    • /
    • 제47권6호
    • /
    • pp.808-812
    • /
    • 2010
  • This paper studies the finite element modeling and analytical parameters for the numerical evaluation of dynamic stiffness of large foundation for shipboard equipments such as marine diesel engine. For the purpose, numerical method and procedure to evaluate the dynamic stiffness are established based on the impact test method, which are applied for the dynamic stiffness evaluation of a real diesel generator foundation of ship. Numerical investigations compared with the measured data are carried out to evaluate the effects of modeling ranges of ship substructure, finite element sizes, lower support structures and damping coefficients. From the results, modeling and analytical parameters for proper evaluation of dynamic stiffness of large foundation of shipboard equipment are suggested.