• Title/Summary/Keyword: Finite Element Method

Search Result 13,355, Processing Time 0.05 seconds

Safety Evaluation Method of Transmission Tower Subjected to Special Load Case According to Broken Wires (전력선 단선으로 인한 이상시 송전철탑의 안전성 평가방법)

  • Jin, Seok Won;Kim, Jong Min;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.131-149
    • /
    • 2008
  • A transmission tower was designed according to general and special load cases based on KEPCO Design Specifications. The special load case such as unbalanced load a cording to some broken wires has not been considered significantly. Therefore, this paper presents investigations on the stability and safety of main post members subjected to unbalanced load and design wind load. In this study, all cases totally considered. From the finite element analyses using LUSAS program, the stresses on the tower subjected to unbalanced load and design wind load were very high in comparison to the allowable stresses of the steel post member that was used. Some of the post member had higher stresses than the yield stress of the steel member. This paper also shows an example to improve the capacity of the post members using increased cross-section members. Based on the analyses results, when investigating the safety of the transmission tower, one must consider thenew design philosophy including ultimate strength of the member and reliability of the special loading cases.

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Fracture Toughness of Concrete Brazilian Disk according to Maximum Size of Coarse Aggregate (굵은골재의 최대치수에 따른 콘크리트 브라질리언 디스크의 파괴인성)

  • Lee, Seung-Hoon;Kim, Hee-Sung;Jang, Hee-Suk;Jin, Chi-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.185-196
    • /
    • 2006
  • Fracture toughness is a material property for crack initiation and propagation in fracture mechanics. For mode I fracture toughness measurement in concrete, RILEM committees 89-FMT proposed three-point bend tests based on the two-parameter fracture model. But, there is no proposed test method as a standard for mixed mode test for now. And RILEM three-point bend test procedure is complicate. Therefore, in this study, brazilian disks of various size were designed as the concrete with a similar specified concrete strength and maximum size of coarse aggregate($G_{max}$) were respectively 20mm and 40mm. And mode I fracture toughness of brazilian disks was compared with that of RILEM three-point bend test. As a result, it was suggested appropriate size(thickness, diameter) and notch length ratio of brazilan disk on the $G_{max}$. And it was verified that stress intensity factors for mixed mode can be easily calculated with the disk specimen. Stress intensity factors of a concrete brazilian disk were evaluated with finite element analysis and five terms approximation for comparison.

A Study on Topographic Effects in 2D Resistivity Survey by Numerical and Physical Scale Modeling (수치 및 축소모형실험에 의한 2차원 전기비저항 탐사에서의 지형효과에 관한 연구)

  • Kim Gun-Soo;Cho In-Ky;Kim Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.165-170
    • /
    • 2003
  • Recently, resistivity surveys have been frequently carried out over the irregular terrain such as mountainous area. Such an irregular terrain itself can produce significant anomalies which may lead to misinterpretations. In this study, topographic effects in resistivity survey were studied using the physical scale modeling as well as the numerical one adopting finite element method. The scale modeling was conducted at a pond, so that we could avoid the edge effect, the inherent problem of the scale modeling conducted in a water tank in laboratory. The modeling experiments for two topographic features, a ridge and a valley with various slope angles, confirmed that the results by the two different modeling techniques coincide with each other fairly well for all the terrain models. These experiments adopting dipole-dipole array showed the distinctive terrain effects, such that a ridge produces a high apparent resistivity anomaly at the ridge center flanked by zones of lower apparent resistivity. On the other hand, a valley produces the opposite anomaly pattern, a central low flanked by highs. As the slope of a terrain model becomes steeper, the terrain-induced anomalies become stronger, and moreover, apparent resistivity can become even negative for the model with extremely high slope angle. All the modeling results led us to the conclusion that terrain effects should be included in the numerical modeling and/or the inversion process to interpret data acquired at the rugged terrain area.

Experimental Study on Applying a Transition Track System to Improve Track Serviceability in Railway Bridge Deck Ends (철도교량 단부 궤도의 사용성 향상을 위한 횡단궤도시스템 적용에 관한 실험적 연구)

  • Lim, Jongil;Song, Sunok;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.207-216
    • /
    • 2013
  • The components of concrete track (rail and rail fastening system) in railway bridge deck ends are damaged and deteriorated by track-bridge interaction forces such as uplift forces and compression forces owing to their structural flexural characteristics (bridge end rotation). This had led to demand for alternatives to improve structural safety and serviceability. In this study, the authors aim to develop a transition track to enhance the long term workability and durability of concrete track components in railway bridge deck ends and thereby improve the performance of concrete track. A time-history analysis and a three-dimensional finite element method analysis were performed to consider the train speed and the effect of multiple train loads and the results were compared with the performance requirements and German standard for transition track. Furthermore, two specimens, a normal concrete track and a transition track, were fabricated to evaluate the effects of application of the developed transition track, and static tests were conducted. From the results, the track-bridge interaction force acting on the track components (rail displacement, rail stress, and clip stress) of the railway bridge deck end were significantly reduced with use of the developed transition track compared with the non-transition track specimen.

Distribution of Magnetic Field Depending on the Current in the μ-turn Coil to Capture Red Blood Cells (적혈구 포획용 미크론 크기 코일에 흐르는 전류의 크기에 따른 자기장 분포 특성)

  • Lee, Won-Hyung;Chung, Hyun-Jun;Kim, Nu-Ri;Park, Ji-Soo;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.162-168
    • /
    • 2015
  • The ${\mu}$-turn coil having a width of ${\mu}m$ on the GMR-SV (giant magnetoresistance-spin valve) device based on the antiferromagnetic IrMn layer was fabricated by using the optical lithography process. In the case of GMR-SV film and GMR-SV device, the magnetoresistance ratios and the magnetic sensitivities are 4.4%, 2.0%/Oe and 1.6 %, 0.1%/Oe, respectively. In the y-z plane the distribution of magnetic field of GMR-SV device and $10{\mu}$-turns coil which put under the several magnetic bead(MB)s with a diameter of $1{\mu}m$ attached to RBC (red blood cell) was analyzed by the computer simulation using the finite element method. When the AC currents of 20 kHz from 0.1 mA to 10.0 mA flow to the 10 turns ${\mu}$-coil, the magnetic field at the position of $z=0{\mu}m$ at the center of coil was calculated from $30.1{\mu}T$ to $3060{\mu}T$ in proportion to the current. The magnetic field at the position of $z=10{\mu}m$ was decreased to one-sixth of that of $z=0{\mu}m$. It was confirmed that the $10{\mu}$-turn coil having enough magnitude of magnetic field for the capture of RBC is possible to use as a biosensor for the detection of magnetic beads attached to RBC.

Comparison of target classification accuracy according to the aspect angle and the bistatic angle in bistatic sonar (양상태 소나에서의 자세각과 양상태각에 따른 표적 식별 정확도 비교)

  • Choo, Yeon-Seong;Byun, Sung-Hoon;Choo, Youngmin;Choi, Giyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.330-336
    • /
    • 2021
  • In bistatic sonar operation, the scattering strength of a sonar target is characterized by the probe signal frequency, the aspect angle and the bistatic angle. Therefore, the target detection and identification performance of the bistatic sonar may vary depending on how the positions of the target, sound source, and receiver are changed during sonar operation. In this study, it was evaluated which variable is advantageous to change by comparing the target identification performance between the case of changing the aspect angle and the case of changing the bistatic angle during the operation. A scenario of identifying a hollow sphere and a cylinder was assumed, and performance was compared by classifying two targets with a support vector machine and comparing their accuracy using a finite element method-based acoustic scattering simulation. As a result of comparison, using the scattering strength defined by the frequency and the bistatic angle with the aspect angle fixed showed superior average classification accuracy. It means that moving the receiver to change the bistatic angle is more effective than moving the sound source to change the aspect angle for target identification.

Assessment of Equivalent Heights of Soil for the Lateral Earth Pressure Against Retaining Walls Due to Design Truck Load (표준트럭하중에 의해 옹벽에 작용하는 수평토압의 등가높이 산정)

  • Kim, Duhwan;Jin, Hyunsik;Seo, Seunghwan;Park, Jaehyun;Kim, Dongwook;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.119-128
    • /
    • 2018
  • Limit state design has been implemented in Korea since 2015; however, there exists no specification of lateral load determination on retaining wall due to the Korean standard traffic load on retaining wall's backfill surface. The lateral load from traffic depends on lane number, standard truck's axle loads and locations, loading distance from the inner wall. The concept of equivalent height of soil accounting for traffic loadings is typically used for design of retaining walls to quantify the traffic loads transmitted to the inner wall faces. Due to the different characteristics of the standard design trucks between Korea and US (AASHTO), the direct use of the guidelines from AASHTO LRFD leads to incorrect estimation of traffic load effects on retaining walls. This paper presents the results of evaluation of equivalent height of soil to reflect the Korean standard truck, based on the findings from analytical solutions using Bounessq's theory and numerical assessment using 2D finite element method. Consequently, it was found that the equivalent heights of soil from the Korean standard truck load were lower for lower retaining wall height.

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.

Estimation of Structural Safety for PolyEthylene (PE) Floating Platforms with API & AISC Standards (API & AISC 기준을 적용한 PolyEthylene (PE) 부유식 플랫폼의 구조 안전성 검토)

  • Seo, Kwang-Cheol;Nam, Taek-Kun;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.237-243
    • /
    • 2019
  • Floating platforms made of PE (PolyEthylene) are often located in shallows of seas, rivers or lakes. They are widely used for marine pensions, marine pontoons, marine bridges, etc. These products are characterized by good flexibility, recyclability, chemical resistance and weatherability with corrosion resistance. Existing PE floating platforms have a simple structure in which one pipe is fastened to one bracket, but this has limited application, even if a user modifies the arrangement. Therefore, we developed a structure that allows buoyancy pipes of various sizes to be fastened to one bracket and verified the structural safety of the product using the finite element method. From the results of structural analysis for buoyancy pipes of different diameters, the maximum stress ratio was 0.78 compared with allowable criteria of 1.0, which represented sufficient safety for a model with 500 mm diameter pipes. Based on the results of this study, further research to evaluate the structural safety of various floating platforms can be carried out in the further; it will also be necessary to establish related evaluation criteria.