• 제목/요약/키워드: Finite Element Impact Analysis

검색결과 795건 처리시간 0.021초

저속충격을 받는 복합적층판의 두께 변화에 따른 충격거동 조사 (Investigation of Impact Behavior by Thickness variation of Laminated Composite Subjected to Low-Velocity Impact)

  • 권숙준;전진형;김승덕
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.74-79
    • /
    • 2008
  • 본 논문에서는 유한요소법을 이용하여 저속충격을 받는 복합적층판(Graphite/Epoxy)의 충격과도응답을 조사한다. 판의 대처짐을 고려한 von-Karman 이론에 Mindlin의 전단변형 효과와 회전관성 효과를 포함한 비선형 이론을 도입한다. 과도응답의 수렴은 정적만입실험을 통해 얻은 접촉법칙을 사용하며, 다양한 복합적층판의 두께 변화에 따른 접촉력, 변위응답, 변형률 등을 조사하여 비교 분석한다.

  • PDF

유한요소법을 통한 판에서 시간반전 램파의 공간집속성능 규명 (Investigating the Spatial Focusing Performance of Time Reversal Lamb Waves on a Plate through the Finite Element Method)

  • 최정희;이해성;박현우
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1120-1131
    • /
    • 2011
  • Researches using time reversal acoustics(TRA) for impact localization have been paid attention to recently. Dispersion characteristics of Lamb waves, which restrict the utility of classical nondestructive evaluation based on time-of-flight information, can be compensated through the application of TRA to Lamb waves on a plate. This study investigates the spatial focusing performance of time reversal Lamb waves on a plate using finite element analysis. In particular, the virtual sensor effect caused by multiple wave reflections at the boundaries of a plate is shown to enable the spatial focusing of Lamb waves though a very small number of surface-bonded piezoelectric(PZT) sensors are available. The time window size of forward response signals, are normalized with respect to the number of virtual active sensors. Then their effects on the spatial focusing performance of Lamb waves are investigated.

유한요소 시뮬레이션을 통한 저온 분사 코팅의 계면 접합에 대한 연구 (Finite Element Simulation of Interface Bonding in Kinetic Sprayed Coatings)

  • 배규열;강기철;윤상훈;이창희
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.74-80
    • /
    • 2008
  • A finite element modeling approach has been described for the simulation and analysis of the micron-scaled solid particle impact behavior in kinetic spraying process, using an explicit code (ABAQUS 6.7-2). High-strain-rate plastic deformation and interface bonding features of the copper, nickel, aluminum, and titanium were investigated via FEM in conjunction with the Johnson-Cook plasticity model. Different aspects of adiabatic shear instabilities of the materials were characterized as a concept of thermal boost-up zone (TBZ), and also discussed based upon energy balance concept with respect to relative recovery energy (RRE) for the purpose of optimizing the bonding process.

유한요소해석을 이용한 차대차 측면충돌에 대한 연구 (A Study on Side Impact from Car-to-Car using Finite Element Analysis)

  • 한영규;백세룡;윤준규;임종한
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.201-209
    • /
    • 2015
  • 차대차의 측면충돌에서 충돌부위에 따라 차체의 변형정도는 크게 달라진다. 충돌로 인하여 차체에 변형이 일어나는 경우에 속도에너지가 변형에너지로 전달되어 거동이 달라진다. 일반적으로 교통사고분석에서는 충돌 후 차량의 거동을 운동량 보존법칙으로 분석하며 차체의 변형에 따른 에너지 흡수량은 반발계수를 입력하여 그 오차를 보정할 수 있으나 측면충돌에 대한 연구결과는 그다지 많지 않으므로 전방충돌과 후방추돌에 대한 연구결과를 참고해서 반발계수를 적용하고 있는 실정이다. 본 연구에서는 차체의 구조와 각 부품의 재질을 적용한 유한요소 차량모델을 외연적 유한요소법으로 해석하였으며, 그 결과를 분석하여 측면충돌에서 차량의 접촉부위에 따른 반발계수와 충돌감지시간을 도출하였다. 최종적으로 산출된 반발계수와 충돌감지시간을 적용하여 운동량보존법칙에 의해 얻어진 해석결과를 실제 차량의 충돌결과와 비교하였다. 그 결과로 유한요소해석 모델을 이용하여 도출한 초기 입력값을 적용했을 때 기존의 분석기법보다 해석의 신뢰도가 높다는 결과를 얻게 되었다.

충격하중을 받는 박판의 후좌굴 해석 (Postbuckling Analysis of Thin Plates under Impact Loading)

  • 김형열;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권3호
    • /
    • pp.139-149
    • /
    • 2002
  • Explicit 직접적분법을 사용하여 충격하중을 받는 박판의 후좌굴거동을 해석할 수 있는 알고리즘을 제안하였다. von Karman의 대변위 판 이론과 Marquerre의 쉘 이론을 이용하여 유도한 직사각형 평판 유한요소는 박판의 초기처짐과 기하학적 비선형 거동을 고려할 수 있다. 중앙차분법을 바탕으로 해석 알고리즘을 개발하였고 이를 프로그램화 시켜, 하중형상과 재하시간이 다른 충격하중에 대하여 박판의 동적 좌굴거동을 해석 하였다. 수치해석 예제를 통하여 Explicit 직접적분법의 특성을 평가하였다.

내부에 길이방향 사각판이 부착된 원통셸의 자유진동 해석 (Free Vibration Analysis of Circular Cylindrical Shells with Longitudinal, Interior Rectangular Plate)

  • 이영신;최명환;류충현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.205-210
    • /
    • 1997
  • The analysis of the free vibrations of a circular cylindrical shell with a logitudinal, interior rectangular plate is performed. The natural frequencies and the mode shapes of the combined shells are experimentally obtained by impact testing using an impact hammer and an accelerometer. The effects of the position of the plate on the frequencies and mode shapes of the combined system are examined. The experimental results are compared with a finite element analysis and show good agreement.

  • PDF

Damage propagation in CFRP laminates subjected to low velocity impact and static indentation

  • Aoki, Yuichiro;Suemasu, Hiroshi;Ishikawa, Takashi
    • Advanced Composite Materials
    • /
    • 제16권1호
    • /
    • pp.45-61
    • /
    • 2007
  • This paper describes a damage accumulation mechanism in cross-ply CFRP laminates $[0_2/90_2]_{2S}$ subjected to out-of-plane loading. Drop-weight impact and static indentation tests were carried out, and induced damage was observed by ultrasonic C-scan and an optical microscope. Both tests gave essentially the same results for damage modes, sizes, and load-deformation history. First, a crack occurred in the bottom $0^{\circ}$ layer accompanying some delamination along the crack caused by bending stress. Then, transverse cracks occurred in the middle $90^{\circ}$ layer with decreasing contact force between the specimen and the indenter. Measured local strains near the impact point showed that the stress state changed from a bending dominant state to an in-plane tensile dominant state. A cohesive interface element was used to simulate the propagation of multiple delaminations and transverse cracks under static indentation. Two types of analytical models are considered, one with multiple delaminations and the other with both multiple delaminations and transverse cracks. The damage obtained for the model with only multiple delaminations was quite different from that obtained from the experiment. However, the results obtained from the model with both delaminations and transverse cracks well explain the characteristics of the damage obtained in the experiment. The existence of the transverse cracks is essential to form the characteristic impact damage.

유한요소법에 의한엔진 구조소음 해석 (An Engine Structure-Borne Noise Analysis by Finite Element Method)

  • 안상호;김주연;김규철
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.122-133
    • /
    • 1998
  • This paper presents the static analysis, the modal analysis and the forced vibration analysis on engine structures to find out the structure-borne noise sources by finite element method. The deformation of engine structures under the maximum combu- stion gas force was calculated through the static analysis, and the resonance possibilities were predicted by the modal analysis which ascertains mode shapes and the corresponding frequencies of engine global and its major noise sources in engine surfaces were investigated with the forced vibration analysis by means of finding the transfer mobilities on engine surfaces due to the piston impact and the velocity levels due to the combustion in consideration of oil film stiffness and damping coefficients. Finally, the direction of engine structure-borne noise reduction can be estabilished by the above-mentioned analysis procedure and the reduction effect of cost on proto-type engine build-up is expected.

  • PDF

충격흡수용 복합부재의 에너지 흡수특성에 관한 유한요소해석 (Finite Element Analysis on the Energy Absorption Characteristics of Hybrid Structure)

  • 신현우
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.101-107
    • /
    • 2004
  • Recently the objective of vehicle design was focused on the crash safety and the energy saving. For the energy saving vehicle structures must be light weight, but for the crash safety some energy absorbing elements must be added. In this paper hybrid structure which consists of a steel and a FRP was studied on the energy absorption characteristics under the impact load by finite element method. Test results of the other researchers were compared with that of computer simulation on this simple hybrid structure. Side rail of vehicle front structure was replaced with hybrid materials for the application of the vehicle structure. 35mph frontal crash simulation was performed with hybrid structure and with conventional steel structure. By the adoption of hybrid structure, the improvement of energy absorption characteristics and reduction of weight was observed under the frontal crash simulation.

소성변형을 갖는 원통형 제동장치의 동적거동에 관한 유한요소해석 (Finite Element Analysis on the Dynamic Behavior of a Cylindrical Brake Device with Plastic Deformation)

  • 김지철;이학렬;심우전
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.199-204
    • /
    • 2000
  • A cylindrical brake device with plastic deformation is designed to stop the object moving at high velocity. Baseline model is determined based on the design specification and analytic solutions. Using finite element method, effects of various design parameters, such as thickness of the cylinder, clearance between cylinder and rod, and cone angle, to the performance of the brake device are investigated. Cone-type brake device shows better performance than cylindrical brake device with constant thickness in that plastic hinges are generated sequentially from impact end to fixed boundary, thus increasing the reliability of braking operation.

  • PDF