• 제목/요약/키워드: Finite Element Impact Analysis

검색결과 785건 처리시간 0.022초

강재 맨홀뚜껑의 보강구조 해석 (Analysis of Strengthening Structures of Steel Manhole Cover)

  • 김흥규;양영수;배강열
    • Journal of Welding and Joining
    • /
    • 제32권2호
    • /
    • pp.54-62
    • /
    • 2014
  • Manhole cover, which is usually made of grey cast iron and consists of frame and cover, should have enough strength to support the heavy traffic load. The manhole cover made of cast iron has heavy weight to handle manually and is vulnerable to impact force with its brittle characteristics. Moreover, its production process of casting has been regulated in terms of environmental pollution. In this study, steel manhole cover is proposed to substitute the cast cover with a series of structural analyses to confirm its strength to support the test load for manhole cover. The cover of the proposed steel manhole cover is made of thin circular pate and stiffeners below the plate. Rectangular columns and hollow circular plate were selected for the shape of the stiffener. In order to give enough strength for the cover to behave within elastic range in the loading, strengthening structures of the cover were varied with increasing the number and the size of the stiffeners. The results of the analyses revealed that when both the hollow circular stiffener and cross stiffeners were additionally applied at the same time to the steel cover with longitudinal stiffeners, the maximum stress level in the cover could be reduced to that level presented in the cast cover.

Simplified beam model of high burnup spent fuel rod under lateral load considering pellet-clad interfacial bonding influence

  • Lee, Sanghoon;Kim, Seyeon
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1333-1344
    • /
    • 2019
  • An integrated approach of model simplification for high burnup spent nuclear fuel is proposed based on material calibration using optimization. The spent fuel rods are simplified into a beam with a homogenous isotropic material. The proposed approach of model simplification is applied to fuel rods with two kinds of interfacial configurations between the fuel pellets and cladding. The differences among the generated models and the effects of interfacial bonding efficiency are discussed. The strategy of model simplification adopted in this work is to force the simplified beam model of spent fuel rods to possess the same compliance and failure characteristics under critical loads as those that result in the failure of detailed fuel rod models. It is envisioned that the simplified model would enable the assessment of fuel rod failure through an assembly-level analysis, without resorting to a refined model for an individual fuel rod. The effective material properties of the simplified beam model were successfully identified using the integrated optimization process. The feasibility of using the developed simplified beam models in dynamic impact simulations for a horizontal drop condition is examined, and discussions are provided.

Seismic failure analysis and safety assessment of an extremely long-span transmission tower-line system

  • Tian, Li;Pan, Haiyang;Ma, Ruisheng;Dong, Xu
    • Structural Engineering and Mechanics
    • /
    • 제71권3호
    • /
    • pp.305-315
    • /
    • 2019
  • Extremely long-span transmission tower-line system is an indispensable portion of an electricity transmission system, and its failures or collapse can impact on the entire electricity grid, affect the modern life, and cause great economic losses. It is therefore imperative to investigate the failure and safety of the transmission tower subjected to ground motions. In the present study, a detailed finite element (FE) model of a representative extremely long-span transmission tower-line system is established. A segmental damage indicator (SDI) is proposed to quantitatively assess the damage level of each segment of the transmission tower under earthquakes. Additionally, parametric studies are conducted to investigate the influence of different ground motions and incident angles on the ultimate capacity and weakest segment of the transmission tower. Finally, the collapse fragility curve in terms of the maximum SDI value and PGA is plotted for the exampled transmission tower. The results show that the proposed SDI can quantitatively assess the damage level of the segments, and thus determine the ultimate capacity and weakest segment of the transmission tower. Moreover, the different ground motions and incident angles have a significant influence on the SDI values of the transmission tower, and the collapse fragility curve is utilized to evaluate the collapse resistant capacity of the transmission tower subjected to ground motions.

Evaluating the effects of the inclinations of rock blocks on the stability of bimrock slopes

  • Khorasani, Emad;Amini, Mehdi;Hossaini, Mohammad Farouq;Medley, Edmund
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.279-285
    • /
    • 2019
  • The process of slope stability analysis is one of the most important stages in design of some civil and mining projects. Bimslopes are made from bimrocks (block-in-matrix rocks) where rocky blocks are distributed in a bonded matrix of finer texture. These kind of slopes are often seen in weathered and near-surface depths. Previous studies have shown that VBP (Volumetric Block Proportion) is one of the most significant factors affecting bimrocks strength and consequently the stability of bimslopes. In this paper, the influence of block inclinations on bimslope stability have been investigated. For this purpose, 180 theoretical models have been made with various VBPs, all of them have a specified block size distribution. These bimslopes contain blocks with differing dips relative the slope inclination. Also for each kind of block inclination, 10 different blocks arrangements have been modeled. The Finite Element Method (FEM) was used to analysis the stability of these bimslopes models. The results showed the inclination of blocks has a strong impact on the Safety Factor and stability of bimslopes. When the difference in angle of dip of blocks relative to the slope angle is maximum, the Safety Factor of bimslopes tends to be a maximum compared with the matrix-only state. Furthermore, with increasing VBP of bimslopes stability increases. The graphs obtained from this study could be used for preliminary guidance in the projects design with bimslopes.

Dynamic stability analysis of a rotary GPLRC disk surrounded by viscoelastic foundation

  • Liang, Xiujuan;Ji, Haixu
    • Geomechanics and Engineering
    • /
    • 제24권3호
    • /
    • pp.267-280
    • /
    • 2021
  • The research presented in this paper deals with dynamic stability analysis of the graphene nanoplatelets (GPLs) reinforced composite spinning disk. The presented small-scaled structure is simulated as a disk covered by viscoelastic substrate which is two-parametric. The centrifugal and Coriolis impacts due to the spinning are taken into account. The stresses and strains would be obtained using the first-order-shear-deformable-theory (FSDT). For Poisson ratio, as well as various amounts of mass densities, the mixture rule is employed, while a modified Halpin-Tsai model is inserted for achieving the elasticity module. The structure's boundary conditions (BCs) are obtained employing GPLs reinforced composite (GPLRC) spinning disk's governing equations applying principle of Hamilton which is based on minimum energy and ultimately have been solved employing numerical approach called generalized-differential quadrature-method (GDQM). Spinning disk's dynamic properties with different boundary conditions (BCs) are explained due to the curves drawn by Matlab software. Also, the simply-supported boundary conditions is applied to edges 𝜃=𝜋/2, and 𝜃=3𝜋/2, while, cantilever, respectively, is analyzed in R=Ri, and R0. The final results reveal that the GPLs' weight fraction, viscoelastic substrate, various GPLs' pattern, and rotational velocity have a dramatic influence on the amplitude, and vibration behavior of a GPLRC rotating cantilevered disk. As an applicable result in related industries, the spinning velocity impact on the frequency is more effective in the higher radius ratio's amounts.

Flexural behavior of post-tensioned precast concrete girder at negative moment region

  • Choi, Seung-Ho;Heo, Inwook;Kim, Jae Hyun;Jeong, Hoseong;Lee, Jae-Yeon;Kim, Kang Su
    • Computers and Concrete
    • /
    • 제30권1호
    • /
    • pp.75-83
    • /
    • 2022
  • This study introduced a post-tensioned precast concrete system that was developed and designed to improve the performance of joints by post-tensioning. Full-scaled specimens were tested to investigate flexural performances at the negative moment region, where the test variables were the presence of slabs, tendon types, and post-tensioned lengths. A specimen with slabs exhibited significantly higher stiffness and strength values than a specimen without slabs. Thus, it would be reasonable to consider the effects of a slab on the flexural strength for an economical design. A specimen with unbonded mono-tendons had slightly lower initial stiffness and flexural strength values than a specimen with bonded multi-tendons but showed greater flexural strength than the value specified in the design codes. The post-tensioned length was found to have no significant impact on the flexural behavior of the proposed post-tensioned precast concrete system. In addition, a finite element analysis was conducted on the proposed post-tensioned precast concrete system, and the tests and analysis results were compared in detail.

자율주행차 충돌시나리오 파라미터 분석과 차대차 충돌해석 DB 구성 (A Parametric Study of Crash Scenario of Autonomous Vehicle and Database Construction)

  • 소영명;김호;배준석
    • 자동차안전학회지
    • /
    • 제15권4호
    • /
    • pp.39-47
    • /
    • 2023
  • Research on the safety of autonomous vehicle is being conducted in various countries, including the European Union, and computer simulation techniques so called 'Virtual Tool Chain' are mainly used. As part of the crash safety study of autonomous vehicle, 25 car to car collision scenarios were provided as a result of a real accident-based accident reproduction analysis study conducted by a domestic research institution, and a vehicle crash analysis was performed using the FE car to car model of the Honda Accord. In order to analyze the results of the car to car simulation and to construct a database, major crash parameters were selected as impact speed, angle, location, and overlap, and a method of defining them in an indexed form was presented. In order to compare the crash severity of each scenario, a value obtained by integrating the resultant acceleration measured by the ACU of the vehicle was applied. The equivalent collision test mode was derived by comparing the crash severity of the regulation test mode, 30 deg rigid barrier mode, in the same way.

Research on the educational management model for the interplay of structural damage in buildings and tunnels based on numerical solutions

  • Xiuzhi Wei;Zhen Ma;Jingtao Man;Seyyed Rohollah Taghaodi;H. Xiang
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.21-29
    • /
    • 2024
  • The effective management of damage in tunnels is crucial for ensuring their safety, longevity, and operational efficiency. In this paper, we propose an educational management model tailored specifically for addressing damage in tunnels, utilizing numerical solution techniques. By leveraging advanced computational methods, we aim to develop a comprehensive understanding of the factors contributing to tunnel damage and to establish proactive measures for mitigation and repair. The proposed model integrates principles of tunnel engineering, structural mechanics, and numerical analysis to facilitate a systematic approach to damage assessment, diagnosis, and management. Through the application of numerical solution techniques, such as finite element analysis, we demonstrate the efficacy of the proposed model in simulating various damage scenarios and predicting their impact on tunnel performance. Additionally, the educational component of the model provides valuable insights and training opportunities for tunnel management personnel, empowering them to make informed decisions and implement effective strategies for ensuring the structural integrity and safety of tunnel infrastructure. Overall, the proposed educational management model represents a significant advancement in tunnel management practices, offering a proactive and knowledge-driven approach to addressing damage and enhancing the resilience of tunnel systems.

차량 충격 시뮬레이션을 통한 복합소재 교량용 방호울타리의 성능 분석 (Performance Evaluation of Composite Safety Barrier for Bridge by Vehicle Impact Simulation)

  • 김승억;전신열;홍갑의;이민철
    • 한국전산구조공학회논문집
    • /
    • 제24권5호
    • /
    • pp.499-506
    • /
    • 2011
  • 본 연구에서는 컴퓨터 시뮬레이션을 통해 복합소재 교량용 방호울타리의 성능을 분석하였다. 복합소재 방호울타리는 SB4등급을 선정하였다. 복합소재의 적층을 고려하기 위해 LS-DYNA에서 제공하는 재료모델 MAT58을 사용하였다. 복합소재는 섬유와 수지의 종류 및 섬유의 방향에 따라 성능이 상이하다. 수지는 폴리우레탄, 섬유는 유리섬유를 사용하였다. 본 논문에서는 섬유의 방향성이 다른 3가지 적층 설계안에 대해서 충돌 시뮬레이션을 수행하여 성능을 비교 평가하였다. 실차충돌 실무 업무편람에 따라 구조적 강도성능, 탑승자 보호성능, 충돌 후 차량의 거동, 가드레일의 비산에 대한 성능 평가를 실시하였다. 그 결과 적층 설계의 횡 방향 섬유의 양이 많아질수록 충돌 시뮬레이션에서 더 좋은 성능을 나타내었다.

알루미늄 표피 구조의 Ice 충돌 특성에 관한 연구 (Investigation of Ice Impacts on Aluminum Skin Structure)

  • 박규철;명노신
    • 한국항공우주학회지
    • /
    • 제31권5호
    • /
    • pp.110-116
    • /
    • 2003
  • 항공기 기술의 발전에 따라 기체 경량화는 성능에 큰 영향을 미치는 요소로 대두되었으며, 비행 중 도는 지상 계류 중 우박에 의한 표면 손상 문제가 중요한 설계 인자로 부각되었다. 우박은 항공기 운용 안정성 및 비용 면에서 심각한 피해를 입히는 경우가 많다. 대부분의 군용, 상용 항공기의 외부 구조 특히 레이돔, 캐노피 등 전방 부분과 주익, 미익의 앞전 부분은 쉽게 손상을 입는 부분임에도 불구하고, 이에 관한 연구는 활발하지 못했다. 이에 관한 일부 연구도 복합재에 집중되어 왔으며, 금속재에 관한 연구는 미미한 편이다. 본 연구에서는 상용 비선형 동적 수치 해석 코드인 LS-DYNA를 이용하여 ice 재질의 충돌 거동과 박판 알루미늄의 충돌 영향성을 분석하였다. 해석 방법은 유사 실험 자료를 이용하여 검증하였고, 주요 결과를 도표화하여 활용 및 응용 방안을 모색하였다.