• Title/Summary/Keyword: Finite Element Impact Analysis

Search Result 785, Processing Time 0.03 seconds

A spectrally formulated finite element method for vibration of a tubular structure

  • Horr, A.M.;Schmidt, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.209-226
    • /
    • 1996
  • One of the major divisions in the mathematical modelling of a tubular structure is to include the effect of the transverse shear stress and rotary inertia in vibration of members. During the past three decades, problems of vibration of tubular structures have been considered by some authors, and special attention has been devoted to the Timoshenko theory. There have been considerable efforts, also, to apply the method of spectral analysis to vibration of a structure with rectangular section beams. The purpose of this paper is to compare the results of the spectrally formulated finite element analyses for the Timoshenko theory with those derived from the conventional finite element method for a tubular structure. The spectrally formulated finite element starts at the same starting point as the conventional finite element formulation. However, it works in the frequency domain. Using a computer program, the proposed formulation has been extended to derive the dynamic response of a tubular structure under an impact load.

A Study on the Impact Absorbing Characteristics for Various Shape and Hardness of Cylindrical Rubber Structures (원주형 고무구조물의 형상과 재질변화에 따른 충격흡수특성)

  • Kim, Dong-Jin;Kim, Wan-Doo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.441-446
    • /
    • 2004
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. The effects of thickness and diameter of the cylindrical rubber structures were investigated. The impact absorbing ratio of the rubber material was studied order to compare the peak reaction force of the specimen which only contained aluminum against the specimen with the inserted rubber part.

  • PDF

FRONTAL IMPACT FINITE ELEMENT MODELING TO DEVELOP FRP ENERGY ABSORBING POLE STRUCTURE

  • Elmarakbi, A.M.;Sennah, K.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.555-564
    • /
    • 2006
  • The aim of this paper is to contribute to the efficient design of traffic light poles involved in vehicle frontal collisions by developing a computer-based, finite-element model capable of capturing the impact characteristics. This is achieved by using the available non-linear dynamic analysis software "LS-DYNA3D", which can accurately predict the dynamic response of both the vehicle and the traffic light pole. The fiber reinforced polymer(FRP) as a new pole's material is proposed in this paper to increase energy absorption capabilities in the case of a traffic pole involved in a vehicle head-on collision. Numerical analyses are conducted to evaluate the effects of key parameters on the response of the pole embedded in soil when impacted by vehicles, including: soil type(clay and sand) and pole material type(FRP and steel). It is demonstrated from the numerical analysis that the FRP pole-soil system has favorable advantages over steel poles, where the FRP pole absorbed vehicle impact energy in a smoother behavior, which leads to smoother acceleration pulse and less deformation of the vehicle than those encountered with steel poles. Also, it was observed that clayey soil brings a slightly more resistance than sandy soil which helps reducing pole movement at ground level. Finally, FRP pole system provides more energy absorbing leading to protection during minor impacts and under service loading, and remain flexible enough to avoid influencing vehicle occupants, thus reducing fatalities and injuries resulting from the crash.

Prediction of Dynamic Characteristics of Small DC Motor (소형 직류 모터의 동특성 예측)

  • Kim, Kug-Weon;Ahn, Tae-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.107-112
    • /
    • 2006
  • In this paper, described is a research on the modal analysis of small DC motor by finite element method fer the vibration reduction. An impact test is performed to obtain the natural frequencies and modal shapes of DC motor, which valuate the usefulness of the finite element analysis model. From the study, we show that this finite element analysis model can be applicable for designing a new motor with improvement in vibration characteristics. As an example, a shape modification of DC motor is performed and its vibration characteristics is discussed in comparison with those of original shape.

  • PDF

A Study on Reconstructing Impact Forces of an Aircraft Wing Using Impact Response Functions and Regularization Methods (충격응답함수와 조정법을 이용한 항공기 날개의 충격하중 복원 연구)

  • 박찬익
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.41-46
    • /
    • 2006
  • The capability for reconstructing impact forces of an aircraft wing using impact response functions and regularization methods were examined. The impact response function which expresses the relation between the structure response and the impact force was derived using the information on mass and stiffness data of a finite element model for the wing. Iterative Tikhonov regularization method and generalized singular value decomposition method were used to inverse the impact response function that was generally ill-posed. For the numerical verification, a fighter aircraft wing was used. Strain and deflection histories obtained from finite element analysis were compared with the results calculated using impact response functions. And the impact forces were reconstructed with the strain histories obtained from finite element analysis. The numerical verification results showed that this method can be used to monitor impact forces on aircraft structures.

Design Improvement of Front-End Loader for Tractor to Reduce Stress Concentration and Evaluation of Impact Safety (응력집중 저감을 위한 트랙터용 프론트 로더의 설계개선 및 충격 안전성 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.109-119
    • /
    • 2018
  • The purpose of this study is to evaluate the structural safety of the front-end loader for the 90 kW class of agricultural tractors in impact test conditions. Deformation and stress on the loader under the impact test conditions are analyzed using the commercial finite element analysis software ANSYS. In previous research dealing with the initial design of the loader, the maximum stress occurred in the mount and exceeded the yield strength of the material. In this paper, an improved design of the mount of the loader was proposed to reduce the stress concentration in the initial design. The safety of the improved design was verified by performing rigid-body dynamics analysis, transient structural analysis, and static structural analysis under three impact test conditions: a drop and catch test, a corner pull test, a corner push test. It was found that the local stress concentration in the mount that appeared in the initial design was greatly reduced in the improved design, and that the maximum stresses occurred in the three impact test conditions are smaller than the yield strength. It is expected that the design improvement of the mount proposed in this study and the method of analysis may be effectively used to enhance structural safety in the development of new model front loaders in the future.

Development of Damage Detection Technique in Laminated Composites using Tapping Sound (타격음을 이용한 복합재료 구조물의 손상탐지법의 개발)

  • 김승조;황준석;송준영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.171-174
    • /
    • 2000
  • In this paper, impact sound realization of composite structures is performed to investigate the possibility of a new NDE system - Tapping Sound Analysis (TSA). TSA detects the existence of damages inside the structures by comparing tapping sound with pre-computed sound data of healthy structures. Tapping on the structures is modeled as impact problem and solved using finite element method. Calculation of sound is formulated based on the coupled finite element and boundary element method. Numerical simulation of impact sound and feature extraction scheme show that the impact sound can be used in the identification of damages of laminated composites.

  • PDF

Dynamic Instability Analysis of Euler Column under Impact Loading (충격하중을 받는 Euler기둥의 동적좌굴 해석)

  • 김형열
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.187-197
    • /
    • 1996
  • An explicit direct time integration method based solution algorithm is presented to predict dynamic buckling response of Euler column. On the basis of large deflection beam theory, a plane frame finite element is formulated and implemented into the solution algorithm. The element formulation takes into account geometrical nonlinearity and overall buckling of steel structural frames. The solution algorithm employs the central difference method. Using the computer program developed by the author, dynamic instability behavior of Euler column under impact loading is investigated by considering the time variation of load, load magnitude, and load duration. The free vibration of Euler column caused by a short duration impact load is also studied. The validity and efficiency of the present formulation and solution algorithm are verified through illustrative numerical examples.

  • PDF

ANALYSIS OF LOW-VELOCITY IMPACT ON COMPOSITE SANDWICH USING A SOLID ELEMENT (솔리드 요소를 이용한 복합재 샌드위치의 저속충격 해석)

  • Park, Jung;Park, Hoon-Cheol;Yoon, Kwang-Joon;Goo, Nam-Seo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.170-173
    • /
    • 2001
  • Low-velocity impact on composite sandwich panel has been investigated. For the study, a finite element program is coded using 18-node assumed strain solid element and Newmark-beta method. Contact force is calculated from a proposed modified contact low. The finite element code is verified by solving typical example. The calculated impact behavior agreed well with experimental result.

  • PDF

Investigation of the Stress-Wave Propagation In Improve the Reliability of the Impact-Echo Method (충격반향기법의 신뢰성 향상을 위한 탄성파 파동전파 특성의 연구)

  • 조미라
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.266-274
    • /
    • 2002
  • The impact-echo test, which is to evaluate the integrity of concrete and masonry structures nondestructively, is an excellent method in the practical application. However, there are cases that the Impact-Echo testing nay result in the low reliability. In this study, the reliability of the Impact-Echo testing was investigated through the numerical simulation of the Impact-Echo testing. The finite element analysis and the analysis based on the dynamic stiffness matrix method was incorporated for the numerical simulation, in which the cases of a sandwiched shear stiffness, an incr+easing or decreasing stiffness, and a homogeneous stiffness. Based on the results of the analysis were considered, this study proposed the approaches to Improve the reliability of the Impact-Echo testing.