• 제목/요약/키워드: Finite Element Human Head Model

검색결과 13건 처리시간 0.025초

Numerical Human Head Model for Traumatic Injury Assessment

  • Park, Hyung-Yun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.995-1001
    • /
    • 2001
  • The finite element human head model is developed for traumatic injury assessment. The model is constructed based on the precise anatomical geometry and validated with test results. In this paper, structural and physiologic explanation of human head will be introduced as well as the modeling methodology. Some of simulation results are also chosen to present major features of the model.

  • PDF

검도 머리치기 동작의 인체 근골격 모델개발 및 응력해석 (Development on Human Muscle Skeletal Model and Stress Analysis of Kumdo Head Hitting Motion)

  • 이중현;이세훈;이영신
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.116-125
    • /
    • 2007
  • Human muscle skeletal model was developed for biomechanical study. The human model was consists with 19 bone-skeleton and 122 muscles. Muscle number of upper limb, trunk and lower limb part are 28, 60, 34 respectively. Bone was modeled with 3D beam element and muscle was modeled with spar element. For upper limb muscle modelling, rectus abdominis, trapezius, deltoideus, biceps brachii, triceps brachii muscle and other main muscles were considered. Lower limb muscle was modeled with gastrocenemius, gluteus maximus, gluteus medius and related muscles. The biomechanical stress and strain analysis of human was conducted by proposed finite element analysis model under Kumdo head hitting motion. In this study structural analysis has been performed in order to investigate the human body impact by Kumdo head hitting motion. As the results, the analytical displacement, stress and strain of human body are presented.

세 가지 주요 검도 공격 동작에서의 근-골격계 응력과 번형률 해석에 관한 연구 (A Study on the Stress and Strain Analysis of Human Muscle Skeletal Model in Kendo Three Typical Attack Motions)

  • 이중현;이영신
    • 한국정밀공학회지
    • /
    • 제25권9호
    • /
    • pp.126-134
    • /
    • 2008
  • Kendo is one of the popular sports in modem life. Head, wrist and thrust attack are the fast skill to get a score on a match. Human muscle skeletal model was developed for biomechanical study. The human model was consists with 19 bone-skeleton and 122 muscles. Muscle number of upper limb, trunk and lower limb part are 28, 60, 34 respectively. Bone was modeled with 3D beam element and muscle was modeled with spar element. For upper limb muscle modelling, rectus abdominis, trapezius, deltoideus, biceps brachii, triceps brachii muscle and other main muscles were considered. Lower limb muscle was modeled with gastrocenemius, gluteus maximus, gluteus medius and related muscles. The biomechanical stress and strain analysis of human muscle was conducted by proposed human bone-muscle finite element analysis model under head, wrist and thrust attack for kendo training.

유한 요소 모형을 이용한 어린이의 머리 충격 부상에 관한 연구 (An analysis of the Child Head Impact Injury with Finite Element Model)

  • 김영은;남대훈;왕규창
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.169-179
    • /
    • 1997
  • The dynamic response of the human brain to direct impact was studied by three-dimensional finite element modeling. The model includes a layered shell closely representing the cranial bones with the interior contents occupied by an incompressible continuum to simulate the brain. Falx and tentorium modeled with 4 node membrane element were also incorporated. The computed pressure-time histories at 4 locations within the brain element compared quite favorably with previously published experimental data from cadaver experiments. Therefore, the purpose of this study was to determine the effects of the impact direction on the dynamic response of the brain in children. A parametric study was subsequently conducted to identify the model response when the age and impact site were varied.

  • PDF

인체 경추부의 유한요소 모델링 (Finite element modeling of human cervical spine)

  • 최형연;엄홍원;이태희;강승백;황민철
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.280-283
    • /
    • 1997
  • Human cervical spine has to protect the neural components and vascular structures. Also, it must have the flexibility afforded by an extensive range of motion to integrate the head with the body and environment. Because of these two-sided features, human cervical spine has very complicated shapes and their injury mechanisms are not fully understood yet. We have developed analytical model of human CS by using the finite element method. The model has been verified with in vivo and in vitro experimental results. From the qualitative analysis of simulation results, we were able to explain some of the fundamental mechanisms of neck pain. Further more, this FE model of human CS can be used as an analytical tool or biomechanical design of the clinical device and safety restraints.

  • PDF

한국 성인 남성의 공학 해석용 정밀 유한 요소 모델 생성과 뼈의 물성 획득에 관한 연구 (Generation of the FE Model of a Korean Young Male Adults and Determination of Mechanical Properties for Engineering Analysis)

  • 유승현;김학균;김종범
    • 비파괴검사학회지
    • /
    • 제26권2호
    • /
    • pp.115-121
    • /
    • 2006
  • 유한 요소 해석을 위해서는 형상과 경계, 하중 조건 그리고 물성을 결정하여야 한다. 그러나 살아 있는 인체에 대해서는 실험이 어렵기 때문에 정확한 형상과 물성을 얻기가 매우 어렵다. 본 논문에서는 한국인 표준체형을 가진 젊은 남성의 생체 자기 공명 영상(MRI : magnetic resonance imaging)을 이용하여 내부 장기를 38가지로 구역화 하고 이것을 이용하여 정밀 유한 요소 모델을 만들었다. 또한 인체를 이루고 있는 다양한 물질들 가운데 뼈에 대한 물성을 얻기 위한 연구를 시행하였다. 인체 뼈의 이방성을 표현할 수 있는 물성을 얻기 위해 성인 남성과 여성의 사체에서 얻은 대퇴골두 시편을 RUS(resonant ultrasound spectroscopy)를 사용하여 탄성 계수 행렬을 얻을 수 있었다.

On the properties of brain sub arachnoid space and biomechanics of head impacts leading to traumatic brain injury

  • Saboori, Parisa;Sadegh, Ali
    • Advances in biomechanics and applications
    • /
    • 제1권4호
    • /
    • pp.253-267
    • /
    • 2014
  • The human head is identified as the body region most frequently involved in life-threatening injuries. Extensive research based on experimental, analytical and numerical methods has sought to quantify the response of the human head to blunt impact in an attempt to explain the likely injury process. Blunt head impact arising from vehicular collisions, sporting injuries, and falls leads to relative motion between the brain and skull and an increase in contact and shear stresses in the meningeal region, thereby leading to traumatic brain injuries. In this paper the properties and material modeling of the subarachnoid space (SAS) as it relates to Traumatic Brain Injuries (TBI) is investigated. This was accomplished using a simplified local model and a validated 3D finite element model. First the material modeling of the trabeculae in the Subarachnoid Space (SAS) was investigated and validated, then the validated material property was used in a 3D head model. In addition, the strain in the brain due to an impact was investigated. From this work it was determined that the material property of the SAS is approximately E = 1150 Pa and that the strain in the brain, and thus the severity of TBI, is proportional to the applied impact velocity and is approximately a quadratic function. This study reveals that the choice of material behavior and properties of the SAS are significant factors in determining the strain in the brain and therefore the understanding of different types of head/brain injuries.

근육 모델이 고려된 두부 및 경추 유한요소모델을 이용한 비관통 피탄 충격에 의한 인체 상해 해석 (Analysis of Human Body Injury by Non-penetrating Ballistic Impact Using a Finite Element Model of the Head and Neck)

  • 강문정;조영남;채제욱;유홍희
    • 대한기계학회논문집A
    • /
    • 제41권1호
    • /
    • pp.1-6
    • /
    • 2017
  • 헬멧을 착용한 병사의 비관통 피탄 충격은 총탄이 헬멧을 관통하지 않더라도 인체에 치명적인 상해를 유발한다. 이로 인한 인체 상해 해석을 위한 연구들이 이뤄져 왔으나 주로 두부의 손상에 초점을 맞춘 해석 모델이 개발되어 왔다. 비관통 피탄 충격에 의한 경추 및 경추부 관련 근육의 손상은 인체에 치명적인 상해를 입히지 않더라도 병사의 생존성에 상당한 영향을 미친다. 따라서 경추 및 경추부 근육을 포함한 모델 개발이 필요하다. 본 연구에서는 기존에 연구된 두부 모델과 근육 모델이 적용된 경추부 모델을 활용하여 인체의 상해해석을 수행하였다. 정량적 상해예측을 위해 응력, 변형률 및 HIC를 비교하였다. 경추부가 포함된 모델의 해석결과는 두부 모델만 고려된 해석결과보다 상해 정도를 작게 예측하였다. 모델의 신뢰성 확보를 위하여 두부 상해 해석 결과를 타 문헌과 비교하였다.

유한요소 모델을 이용한 중이의 소리전달 특성 해석 (Finite Element Analysis of Sound Transfer Characteristics for Middle Ear)

  • 갈영민;백무진;이두호
    • 대한기계학회논문집A
    • /
    • 제35권12호
    • /
    • pp.1563-1571
    • /
    • 2011
  • 본 연구에서는 인간중이의 소리전달특성 계산을 위한 유한요소모델을 개발하였다. 이소골의 형상을 얻기 위하여 한국인 사체에서 추출한 측두골을 마이크로 CT 촬영하여 3 차원 입체모델로 변환하였다. 유한요소모델은 이소골, 고막, 인대와 근육 등을 포함하여 구성하였다. 유한요소모델을 이용하여 고막에서 등골족판까지의 응답함수를 계산한 후 측정값을 갖는 선행연구와 비교하였고 그 결과 10 kHz 주파수 대역까지 소리전달특성을 잘 표현하고 있음을 보였다. 또한 유한요소 모델을 구성하는 주요 물성인자의 변화에 대한 소리전달특성의 변화를 살피고 침등골관절의 강성값이 중이의 소리전달특성에 큰 영향을 미침을 보였다.

유한요소법에 의한 하악제 1 대구치의 Cervical Traction의 효과에 관한 역학적 연구 (A FINITE ELEMENT ANALYSIS OF THE DISPLACEMENT AND STRESS DISTRIBUTION OF HUMAN DRY MANDIBLE DURING THE MANDIBULAR FIRST MOLAR CERVICAL TRACTION)

  • 안의영;정규림
    • 대한치과교정학회지
    • /
    • 제19권1호
    • /
    • pp.45-59
    • /
    • 1989
  • This study was undertaken to analyze the displacement and stress distribution in the mandible according to the pulling directions during mandibular first molar cervical traction after mandibular second molar extraction. The 3-dimensional finite element method(FEM) was used for a mathematical model composed of 594 elements and 1019 nodes. An orthodontic force, 450 gm, was applied to the each mandibular first molar in parallel, and below the occlusal plane by $7^{\circ}\;and\;25^{\circ}$ and meet the midsagittal plane by $40^{\circ}$ toward posterior direction. The results were as follows: 1. Mandibular teeth were displaced in more downward, posterior and lateral direction. Especially high stress was noted in case of parallel pull than in case of below the occlusal plane by $7^{\circ}\;and\;25^{\circ}$. 2. Mandibular first molar was moved bodily. 3. Generally, alveolar bone, mandibular body, ascending ramus and mandibular angle portion were displaced in downward, posterior and lateral direction. But coronoid process was displaced in downward, forward and lateral direction, and anterior and inner middle portion of condyle head and neck were displaced in downward, forward and medial direction, and posterior and outer middle portion of condyle head and neck were displaced in upward, forward and medial direction. 4. Maximum stress was observed at the condyle head and neck portion. With steeper direction of force, condyle head and neck showed more stress than parallel relation to the occlusal plane.

  • PDF