• 제목/요약/키워드: Finite Element (FE)

검색결과 1,847건 처리시간 0.025초

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

연자성 분말코어를 적용한 축방향 영구 자속형 전동기 설계 (Design of Axial Flux Permanent Magnetic Motor Using Soft Magnetic Composite Core)

  • 최명욱;양승진;문채주
    • 한국전자통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.607-616
    • /
    • 2022
  • 본 논문에서는 전기 자동차 응용을 위해 연자성 분말 코어가 있는 새로운 축방향 자속 영구자석 모터를 제안한다. 권선 및 연자성 분말 코어는 매우 조밀한 구조를 형성하도록 설계할 수 있으므로 토크 밀도를 크게 향상시킨다. 우수한 자속 집중 능력을 얻기 위해 두 대의 토로이드형 내부 고정자형 모터가 설계 및 분석되었으며, 설계된 모터에는 고성능 전기자동차 애플리케이션 적용을 위해 네오디움 자석이 사용되었다. 3차원 유한 요소 방법은 전자기 매개변수 및 성능을 분석하는 데 사용되었으며, 성능 비교를 위해 상용 축방향 자속 영구자석 모터가 사용되었다. 제안된 모터는 기존 구동모터에 비해 약 5.8% 무게가 가벼워지고 약 8Nm 정도 높은 토크를 생성하였다.

Compressive behavior of concrete-filled square stainless steel tube stub columns

  • Dai, Peng;Yang, Lu;Wang, Jie;Ning, Keyang;Gang, Yi
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.91-106
    • /
    • 2022
  • Concrete-filled square stainless steel tubes (CFSSST), which possess relatively large flexural stiffness, high corrosion resistance and require simple joint configurations and low maintenance cost, have a great potential in constructional applications. Despite that the use of stainless steel may result in high initial cost compared to their conventional carbon steel counterparts, the whole-life cost of CFSSST is however considered to be lower, which offers a competitive choice in engineering practice. In this paper, a comprehensive experimental and numerical program on 24 CFSSST stub column specimens, including 3 austenitic and 3 duplex stainless steel square hollow section (SHS) stub columns and 9 austenitic and 9 duplex CFSSST stub columns, has been carried out. Finite element (FE) models were developed to be used in parametric analysis to investigate the influence of the tube thickness and concrete strength on the ultimate capacities more accurately. Comparisons of the experimental and numerical results with the predictions made by design guides ACI 318, ANSI/AISC 360, Eurocode 4 and GB 50936 have been performed. It was found that these design methods generally give conservative predictions to the ultimate capacities of CFSSST stub columns. Improved calculation methods, developed based on the Continuous Strength Method, have been proposed to provide more accurate estimations of the ultimate resistances of CFSSST stub columns. The suitability of these proposals has been validated by comparison with the test results, where a good agreement between the predictions and the test results have been achieved.

강박스거더교 가로보 니브레이스(Knee Brace)의 보강효과 (Stiffened Effect of Knee Brace of Cross-Beam in Steel Box-girder Bridges)

  • 길흥배;장갑철;강상규;이일근
    • 대한토목학회논문집
    • /
    • 제29권3A호
    • /
    • pp.227-234
    • /
    • 2009
  • 최근 강박스거더교량 가로보와 박스거더 연결부에 니브레이스(Knee-brace) 설치가 일반화 되어있다. 니브레이스는 가로보-박스거더 연결부의 응력완화 및 횡변형 방지를 목적으로 설치되는 보강재나, 구조적 보강효과에 대해서는 아직 명확하지 않다. 본 연구에서는 유한요소해석을 통하여 니브레이스의 보강효과를 검토하였다. 가로보-박스거더 높이비와 니브레이스 유무를 변수로한 구조해석을 통하여 부재별 응력흐름, 응력수준과 가로보 처짐을 검토하였다. 그리고 수치해석결과의 비교를 통하여 니브레이스의 보강효과를 평가하였다. 유한요소해석 결과는 니브레이스가 박스거더-가로보 연결부의 보강재로서 응력완화 및 구조적 보강효과가 매우 낮음을 보이고 있다.

응답변위법을 적용한 수직구의 내진설계 (Seismic Design of Vertical Shaft using Response Displacement Method)

  • 김용민;정상섬;이용희;장정범
    • 대한토목학회논문집
    • /
    • 제30권6C호
    • /
    • pp.241-253
    • /
    • 2010
  • 본 연구에서는 응답변위법을 수직구 내진설계에 적용하고 구조물의 응답을 정확하게 구할 수 있는 방법을 제시하고자 기반면, 지반의 상대변위 산정 방법, 하중 산정 및 적용 방법에 따른 3차원 유한요소해석을 수행하였다. 그 결과, 수직구 내진설계를 위한 기반면은 전단파속도가 1500m/s를 초과하는 지반을 선정하는 것이 가장 적합하며, 지반변위 산정 방법은 다층지반의 특성을 반영할 수 있는 double cosine이 가장 적합하다. 또한 응답변위법 해석을 위한 동토압 및 주면전단력 산정 시 구조물의 단면형상효과를 고려하는 것이 실제 수직구의 동적거동을 적절히 반영하며 경제적인 설계를 할 수 있음을 알 수 있었다.

Shear lag effect of varied sectional cantilever box girder with multiple cells

  • Guo, Zengwei;Liu, Xinliang;Li, Longjing
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.295-310
    • /
    • 2022
  • This paper proposes a modified bar simulation method for analyzing the shear lag effect of variable sectional box girder with multiple cells. This theoretical method formulates the equivalent area of stiffening bars and the allocation proportion of shear flows in webs, and re-derives the governing differential equations of bar simulation method. The feasibility of the proposed method is verified by the model test and finite element (FE) analysis of a simply supported multi-cell box girder with constant depth. Subsequently, parametric analysis is conducted to explore the mechanism of shear lag effect of varied sectional cantilever box girder with multiple cells. Results show that the shear lag behavior of variable box-section cantilever box girder is weaker than that of box girder with constant section. It is recommended to make the gradient of shear flow in the web with respect to span length vary as smoothly as possible for eliminating the shear lag effect of box girder. An effective countermeasure for diminishing shear lag effect is to increase the number of box chambers or change the variation manner of bridge depth. The shear lag effect of varied sectional cantilever box girder will get more server when the length of central flanges is shorter than 0.26 or longer than 0.36 times of total width of top flange, as well as the cantilever length exceeds 0.29 times of total length of box's flange. Therefore, the distance between central webs can adjust the shear lag effect of box girder. Especially, the width ratio of cantilever plate with respect to total length of top flange is proposed to be no more 1/3.

Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구 (Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy)

  • 서위걸;;이희남;양동주;박순균;최시훈
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

Impact of openings on the structural performance of ferrocement I-Beams under flexural loads

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ayman M. Elshaboury;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.371-390
    • /
    • 2024
  • Investigating the impact of openings on the structural behavior of ferrocement I-beams with two distinct types of reinforcing metallic and non-metallic meshes is the primary goal of the current study. Up until failure, eight 250x200x2200 mm reinforced concrete I-beams were tested under flexural loadings. Depending on the kind of meshes used for reinforcement, the beams are split into two series. A control I-beam with no openings and three beams with one, two, and three openings, respectively, are found in each series. The two series are reinforced with three layers of welded steel meshes and two layers of tensar meshes, respectively, in order to maintain a constant reinforcement ratio. Structural parameters of investigated beams, including first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were reported. The number of mesh layers, the volume fraction of reinforcement, and the kind of reinforcing materials are the primary factors that vary. This article presents the outcomes of a study that examined the experimental and numerical performance of ferrocement reinforced concrete I-beams with and without openings reinforced with welded steel mesh and tensar mesh separately. Utilizing ANSYS-16.0 software, nonlinear finite element analysis (NLFEA) was applied to illustrate how composite RC I-beams with openings behaved. In addition, a parametric study is conducted to explore the variables that can most significantly impact the mechanical behavior of the proposed model, such as the number of openings. The FE simulations produced an acceptable degree of experimental value estimation, as demonstrated by the obtained experimental and numerical results. It is also noteworthy to demonstrate that the strength gained by specimens without openings reinforced with tensar meshes was, on average, 22% less than that of specimens reinforced with welded steel meshes. For specimens with openings, this value is become on average 10%.

기계학습 기반 지진 취약 철근콘크리트 골조에 대한 신속 내진성능 등급 예측모델 개발 연구 (Machine Learning-based Rapid Seismic Performance Evaluation for Seismically-deficient Reinforced Concrete Frame)

  • 강태욱;강재도;오근영;신지욱
    • 한국지진공학회논문집
    • /
    • 제28권4호
    • /
    • pp.193-203
    • /
    • 2024
  • Existing reinforced concrete (RC) building frames constructed before the seismic design was applied have seismically deficient structural details, and buildings with such structural details show brittle behavior that is destroyed early due to low shear performance. Various reinforcement systems, such as fiber-reinforced polymer (FRP) jacketing systems, are being studied to reinforce the seismically deficient RC frames. Due to the step-by-step modeling and interpretation process, existing seismic performance assessment and reinforcement design of buildings consume an enormous amount of workforce and time. Various machine learning (ML) models were developed using input and output datasets for seismic loads and reinforcement details built through the finite element (FE) model developed in previous studies to overcome these shortcomings. To assess the performance of the seismic performance prediction models developed in this study, the mean squared error (MSE), R-square (R2), and residual of each model were compared. Overall, the applied ML was found to rapidly and effectively predict the seismic performance of buildings according to changes in load and reinforcement details without overfitting. In addition, the best-fit model for each seismic performance class was selected by analyzing the performance by class of the ML models.

Hole 클린칭을 이용한 고장력강판과 Al6061 이종소재의 접합 (Joining High-Strength Steel and Al6061 Sheet Using Hole Clinching Process)

  • 안남식;이찬주;이정민;고대철;이선봉;김병민
    • 대한기계학회논문집A
    • /
    • 제36권6호
    • /
    • pp.691-698
    • /
    • 2012
  • 일반적인 클린칭 접합공정에서 고장력강과 알루미늄의 이종소재간의 접합시 고장력강의 낮은 연신율과 높은 강도로 인해 클린칭 접합시 파단이 발생하거나 높은 클린칭 접합하중이 요구된다. 이러한 문제점을 해결하기 위해 본 연구에서는 클린칭 접합시 고장력강의 변형없이 알루미늄의 변형만을 이용한 홀 클린칭 접합공정을 개발하였다. 고장력강에 홀가공을 적용하여 고장력강의 변형을 배제하였다. 홀 클린칭 접합의 요구접합강도를 기초로 클린칭 접합의 기하학적 구속량을 결정하였으며, 홀 클린칭 금형의 형상은 성형체적 일정조건을 이용하여 설계하였다. 설계된 클린칭 접합공정의 유효성을 평가하기 위해 유한요소해석을 수행하여, 홀 클린칭 접합이 가능함을 확인하였다. 또한 홀 클린칭 접합의 접합강도는 인장전단시험을 통하여 평가하였다. 홀 클린칭 접합강도는 2.56kN으로 요구접합강도와 비교하여 동등수준 이상의 값을 가짐을 확인하였다.