• 제목/요약/키워드: Finite Cylinder

검색결과 596건 처리시간 0.024초

Stabilized finite element technique and its application for turbulent flow with high Reynolds number

  • Huang, Cheng;Yan, Bao;Zhou, Dai;Xu, Jinquan
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.465-480
    • /
    • 2011
  • In this paper, a stabilized large eddy simulation technique is developed to predict turbulent flow with high Reynolds number. Streamline Upwind Petrov-Galerkin (SUPG) stabilized method and three-step technique are both implemented for the finite element formulation of Smagorinsky sub-grid scale (SGS) model. Temporal discretization is performed using three-step technique with viscous term treated implicitly. And the pressure is computed from Poisson equation derived from the incompressible condition. Then two numerical examples of turbulent flow with high Reynolds number are discussed. One is lid driven flow at Re = $10^5$ in a triangular cavity, the other is turbulent flow past a square cylinder at Re = 22000. Results show that the present technique can effectively suppress the instabilities of turbulent flow caused by traditional FEM and well predict the unsteady flow even with coarse mesh.

P2P1 유한요소를 이용한 비압축성 Navier-Stokes 방정식 해법들의 행렬 특성 (CHARACTERISTICS OF MATRICES IN THE P2P1 FINITE ELEMENT METHODS FOR SOLVING THE INCOMPRESSIBLE NAVIER-STOKES EQUATION)

  • 조명환;최형권;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.245-251
    • /
    • 2009
  • Numerical algorithms for solving the incompressible Navier-Stokes equations using P2P1 finite element are compared regarding the eigenvalues of matrices. P2P1 element allocates pressure at vertex nodes and velocity at both vertex and mid nodes. Therefore, compared to the P1P1 element, the number of pressure variables in the P2P1 element decreases to 1/4 in the case of two-dimensional problems and to 1/8 in the three-dimensional problems. Fully-implicit-integrated, semi-implicit- integrated and semi-segregated finite element formulations using P2P1 element are compared in terms of elapsed time, accuracy and eigenvlue distribution (condition number). For the comparison,they have been applied to the well-known benchmark problems. That is, the two-dimensional unsteady flows around a fixed circular cylinder and decaying vortex flow are adopted to check spatial accuracy.

  • PDF

Modified Finite Volume Time Domain Method for Efficient Prediction of Radar Cross Section at High Frequencies

  • Chatterjee, Avijit;Myong, Rho-Shin
    • Journal of electromagnetic engineering and science
    • /
    • 제8권3호
    • /
    • pp.100-109
    • /
    • 2008
  • The finite volume time domain(FVTD) technique faces serious limitations in simulating electromagnetic scattering at high frequencies due to requirements related to discretization. A modified FVTD method is proposed for electrically large, perfectly conducting scatterers by partially incorporating a time-domain physical optics(PO) approximation for the surface current. Dominant specular returns in the modified FVTD method are modeled using a PO approximation of the surface current allowing for a much coarser discretization at high electrical sizes compared to the original FVTD scheme. This coarse discretization can be based on the minimum surface resolution required for a satisfactory numerical evaluation of the PO integral for the scattered far-field. Non-uniform discretization and spatial accuracy can also be used in the context of the modified FVTD method. The modified FVTD method is aimed at simulating electromagnetic scattering from geometries containing long smooth illuminated sections with respect to the incident wave. The computational efficiency of the modified FVTD method for higher electrical sizes are shown by solving two-dimensional test cases involving electromagnetic scattering from a circular cylinder and a symmetric airfoil.

강소성 유한요소법 에 의한 중실 원통봉 업세팅 의 변형 특성 해석 (Rigid-plastic Finite Element Analysis for the Characteristics of Deformation in Upsetting Solid Cylinders)

  • 백남주;최재찬;윤동진
    • 대한기계학회논문집
    • /
    • 제9권6호
    • /
    • pp.725-731
    • /
    • 1985
  • 본 논문에서는 Chen, Kobayashi에 의한 강소성 유한요소법 프로그램을 이용하 여 마찰조건 및 형상비(H$_{O}$/D$_{O}$)가 0.75, 1.0, 1.5에 따른 금형 접촉면상의 응력분포 및 반경방향 증분량 그리고 번형률 분포 등을 고찰하고 실제로 알루미늄과 .alpha.-황동의 두 종류 재료를 사용하여 이론과 동일한 마찰조건과 형상비에 대해 실험함 으로써 그 변형 특성을 F.E.M. 결과와도 비교 고찰하였다. 또한 시편 실험에서 파괴 시까지 실험하여 그 형상도 살펴보았으며 이전 연구와도 비교하여 보았다.

Adaptive p-finite element method for wind engineering

  • Selvam, R. Panneer;Qu, Zu-Qing
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.301-316
    • /
    • 2002
  • An important goal of computational wind engineering is to impact the design process with simulations of flow around buildings and bridges. One challenging aspect of this goal is to solve the Navier-Stokes (NS) equations accurately. For the unsteady computations, an adaptive finite element technique may reduce the computer time and storage. The preliminary application of a p-version as well as an h-version adaptive technique to computational wind engineering has been reported in previous paper. The details on the implementation of p-adaptive technique will be discussed in this paper. In this technique, two posteriori error estimations, which are based on the velocity and vorticity, are first presented. Then, the polynomial order of the interpolation function is increased continuously element by element until the estimated error is less than the accepted. The second through sixth orders of hierarchical functions are used as the interpolation polynomials. Unequal order interpolations are used for velocity and pressure. Using the flow around a circular cylinder with Reynolds number of 1000 the two error estimators are compared. The result show that the estimated error based on the velocity is lower than that based on the vorticity.

Thermal shock behaviors of TiN coatings on Inconel 617 and Silicon wafer substrates with finite element analysis method

  • Lee, Ki-Seuk;Jeon, Seol;Cho, Hyun;Lee, Heesoo
    • 한국결정성장학회지
    • /
    • 제26권2호
    • /
    • pp.67-73
    • /
    • 2016
  • The degradation behaviors of TiN coating layers under thermo-mechanical stress were investigated in terms of comparison of finite element analysis (FEA) and experimental data. The coating specimen was designed to quarter cylinder model, and the pulsed laser ablation was assumed as heat flux condition. The FEA results showed that heat accumulation at the center of the laser-ablated spot occurred and principle stress was concentrated at the lower region of the coating layer. The microstructural observation revealed that surface melting and decrease of the coating thickness occurred in the TiN/Inconel 617 and the interfacial cracks formed in the TiN/Si. The delamination was caused by the mechanical stress from the center to the outside of the ablated spot as the FEA results expected. It was considered that the improvement of the thermal shock resistance was attributed to higher thermal conductivity of Si wafer than that of Inconel 617.

유한요소해석을 이용한 더스트 씰 밀봉성에 대한 설계변수의 영향평가 (Estimation on the effect of design variables for sealing performance of the dust seal using finite element simulation)

  • 이광오;이상욱;허영민;강성수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.123-124
    • /
    • 2006
  • Usually, hydraulic cylinder is widely used as the actuator in the equipment of construction machines, airplane and military machines. In case of these devices, due to use under severe environment such as water, $SiO^2$ and dust, etc. seal which has high packing ability and long service life has been required. These characteristics are largely influenced by material and geometries of seal such as approach angle, withdrawal angle and interference. Recently, many a study about seal material has been performed so that many materials have been developed. But the concrete studies including the relationships between geometry of seal and sealing performance have hardly been performed yet. Therefore, in this study, we predicted the deformation behavior and contact normal distribution of dust seal with the variation of geometries of seal lip using finite element analysis. And based on the results of analyses, we discussed the effects of the design variables fur sealing performance of the dust seal.

  • PDF

Plastic behavior of circular discs with temperature-dependent properties containing an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Wang, Yun-Che;Novozhilova, Olga V.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.731-743
    • /
    • 2016
  • Plastic behaviors, based on the von Mises yield criterion, of circular discs containing a purely elastic, circular inclusion under uniform temperature loading are studied with the finite element analysis. Temperature-dependent mechanical properties are considered for the matrix material only. In addition to analyzing the plane stress and plane strain disc, a 3D thin disc and cylinder are also analyzed to compare the plane problems. We determined the elastic irreversible temperature and global plastic collapse temperature by the finite element calculations for the plane and 3D problem. In addition to the global plastic collapse, for the elastically hard case, the plane stress problem and 3D thin disc may exhibit a local plastic collapse, i.e. significant pile up along the thickness direction, near the inclusion-matrix interface. The pileup cannot be correctly modeled by the plane stress analysis. Furthermore, due to numerical difficulties originated from large deformation, only the lower bound of global plastic collapse temperature of the plane stress problem can be identified. Without considerations of temperature-dependent mechanical properties, the von Mises stress in the matrix would be largely overestimated.

Combined Streamline Upwind Petrov Galerkin Method and Segregated Finite Element Algorithm for Conjugate Heat Transfer Problems

  • Malatip Atipong;Wansophark Niphon;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1741-1752
    • /
    • 2006
  • A combined Streamline Upwind Petrov-Galerkin method (SUPG) and segregated finite element algorithm for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow is presented. The Streamline Upwind Petrov-Galerkin method is used for the analysis of viscous thermal flow in the fluid region, while the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the presented method is to consistently couple heat transfer along the fluid-solid interface. Four test cases, which are the conjugate Couette flow problem in parallel plate channel, the counter-flow in heat exchanger, the conjugate natural convection in a square cavity with a conducting wall, and the conjugate natural convection and conduction from heated cylinder in square cavity, are selected to evaluate efficiency of the presented method.

디스크 브레이크에서 접촉 마찰 진동이 열섬에 미치는 영향 연구 (A Study of Frictional Contact Vibration Influence on Hot Spot in Automotive Disk Brake)

  • 조후준;김명구;조종두
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.154-161
    • /
    • 2007
  • Hot spot phenomenon that occurs, during judder vibration, is locally concentrated heat due to friction between brake disk and pad. It is important to understand the reason behind hot spot phenomenon, for reduction of judder vibration. In this experimental study, experiments were performed in accordance with rotation speed of brake disk, pressure of master cylinder and pad length for achieving different aspects of hot spot phenomenon. Temperature distribution of hot spot was obtained by using the infrared camera. As the hot spot occurred, vibration was measured and frequency analysis was performed. Finite element analysis of thermal deformation of disk was performed by using temperature distribution that was achieved by experimental results. And mode shapes of disk was analyzed by finite element analysis and compared with experimental results. It was observed that the excitation frequency band of frictional contact and frictional force mainly affects the hot spot phenomenon.