• Title/Summary/Keyword: Finite Barrier

Search Result 149, Processing Time 0.03 seconds

An innovative vibration barrier by intermittent geofoam - A numerical study

  • Majumder, Mainak;Ghosh, Priyanka;Sathiyamoorthy, Rajesh
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.269-284
    • /
    • 2017
  • A new technique is proposed to obtain more effective screening efficiency against the ground vibration using intermittent geofoam (IF) in-filled trench. The numerical analysis is performed by employing two-dimensional finite element method under dynamic condition. Vertically oscillated strip foundation is considered as the vibration source. In presence of the ground vibration, the vertical displacements at different locations (pick-up points) along the ground surface are captured to determine the amplitude reduction factor (ARF), which helps to assess the efficiency of the vibration screening technique. The efficiency of IF over continuous geofoam (CF) in-filled vibration barriers is assessed by varying the geofoam density, the location of trench and the frequency of excitation. The results from this study indicate that a significant reduction in ARF can be achieved by using intermittent geofoam as compared to continuous geofoam. Further, it is noticed that the efficiency of IF increases with an increase in the frequency of the vibrating source. These encouraging results put forward the potential of utilising intermittent geofoam as a vibration screening material.

J-T Characterization of Stress Fields Along 3D Semi-Elliptical Interfacial Crack Front (J-T에 의한 3차원 반타원 계면균열선단 응력장의 기술)

  • Choi, Ho-Seung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1250-1261
    • /
    • 2002
  • Many research works have validated the J-T approach to elastic-plastic crack-tip stress fields in a variety of plane strain specimens. To generalize the validity of J-T method, further investigations are however needed for more practical 3D structures than the idealized plane strain specimens. In this work, we perform 3D finite element (FE) modeling of welded plate and straight pipe, and accompanying elastic, elastic-plastic FE analyses. Manual 3D modeling is almost prohibitive, since the models contain semi-elliptical interfacial cracks which require singular elements. To overcome this kind of barrier, we develop a program generating the meshes for semi-elliptical interfacial cracks. We then compare the detailed 3D FE stress fields to those predicted with J-T two parameters. Thereby we extend the validity of J-T application to 3D structures and infer some useful informations for the design or assessment of pipe welds.

ENHANCEMENT THE SOUND TRANSMISSION LOSS OF POROELASTIC LININGS

  • Song, B.Heuk-Jin;Bolton, J.Stuart
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.606-611
    • /
    • 2000
  • It has been noted that the low frequency absorption coefficient of a porous sample placed in a standing wave tube is affected by the nature of the sample's edge constraint. The edge constraint has the effect of stiffening the solid phase of the sample, which itself can be strongly coupled to the material's fluid phase, and hence the incident sound field, by viscous means at low frequencies. In recent work it has also been shown that such a circumferential constraint causes the low frequency transmission loss of a layer of fibrous material to approach a finite low frequency limit that is proportional to the flow resistance of the layer and which is substantially higher than that of an unconstrained sample of the same material. However, it was also found that the benefit of the circumferential edge constraint was reduced in a transitional frequency range by a shearing resonance of the sample. Here it will be shown that the effect of that resonance can be mitigated or eliminated by adding additional axial and radial constraints running through the sample. It will also be shown that the constraint effect can be modeled closely by using a finite element procedure based on the Biot poroelastic theory. Implications for low frequency barrier design are also discussed.

  • PDF

A Study on the Behavior Characteristics of Tsunami Damper for the Nuclear Power Plant (원자력 발전소용 쓰나미 댐퍼의 거동특성에 관한 연구)

  • Seo, Ji-Hwan;Kim, Byung-Tak;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.106-112
    • /
    • 2014
  • This study presents the mechanical behavior of a ventilating window (a tsunami damper) on the building wall of a nuclear power plant. The window, which is under development, is used to ventilate a machinery room and the building under normal conditions, but it also provides a safety barrier for critical equipment against a tsunami caused by an earthquake. A finite element analysis was conducted to investigate the deflection and the stress distribution of the window under given loading conditions. With symmetry, a one-quarter portion of one window was modeled, and the pressure due to a great tide is assumed to be 7 bar. A structural analysis of the assembled frame, composed of a blade and casing, was also conducted using contact conditions to find the stress and strain configurations caused by the applied pressure.

Analysis of Thermal Runaway Phenomenon Caused by ZnO Varistor Operation Using Finite Element Method (유한요소법에 의한 ZnO 바리스터 동작 시 발생되는 열폭주 현상 해석)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.372-376
    • /
    • 2022
  • Since the ZnO varistor is a semiconductor device, the internal thermal distribution during the varistor operation is recognized as an important factor in the performance and deterioration of the varistor. For an optimal varistor structure design, the thermal runaway phenomenon during the varistor operation was interpreted using the Comsol 5.2 analysis program by a finite element analysis. The maximum temperature of the center measured in the cross section of the ZnO varistor was confirmed to increase as the temperature moved from the lower electrode to the center towards the upper electrode up to 572.6 K. The electrodes are thinned so that the influence of the Schottky barrier is not great. The heat gradient balance is determined to be improved when the electrode of the hybrid form is introduced. The thickness, density, pore distribution, impurity uniformity, and particle size of the ZnO varistor are required, and it is determined that the pyrolysis gradient will be improved regardless of the electrode thickness. When these results are applied to design the ZnO varistor, the optimal structure of the ZnO varistor can be obtained.

Finite Element Analysis of a Customized Eyeglass Frame Fabricated by 3D Printing (3 차원 프린팅으로 제작된 개인맞춤형 안경테의 유한요소해석)

  • Lee, Ji-Eun;Im, Young-Eun;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • In recent years, 3D printing has received increasing attention due to releases of low-cost 3D printers based on open-source platform. 3D printing is expected to reduce the barrier to entry in the traditional manufacturing processes by increasing flexibility and creating an advantage to manufacture customized products at low costs. In this study, a unique eyeglass frame was designed to have a snake shape, which has an asymmetric geometry unlike traditional frames. The eyeglass frame was designed in a customized manner by reflecting dimensional characteristics of a customer's face. Finite element analysis was performed to investigate the structural safety of the 3D printed frames during the assembly process. The analysis also considered the effect of anisotropic material properties as determined by tensile tests. The eyeglass frame was then printed using the customized sizes and the best building process. The eyeglass frame was successfully assembled with lenses and without structural failure during its assembly procedure.

The Derivation of Simplified Vehicle Body Stiffness Equation Using Collision Analysis (자동차 충돌해석에 의한 단순화된 차체 강성 방정식의 유도)

  • 장인식;채덕병
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.177-185
    • /
    • 2000
  • The deformation characteristics is one of the major factors to resume the crash configuration in collision accident reconstruction. Crash analysis are carried out using finite element method and body stiffness equations representing force-deformation relationship are derived, Two different crash conditions : 1) frontal barrier impact 2) frontal impact between cars are given for the derivation of the equations. The stiffness coefficient of equation by method 2) is larger than that by method. 1). Crash analysis between two vehicles is accomplished with three crash angles and three velocities for each angle condition. The deformations are measured for six selected points and deformation energies are calculated using the derived equations. Equation by method 2) results in better estimation of deformation energy than that by method 1) for all crush configurations. The estimated energies can be utilized as one of indices to identify the type of the collision accident result.

  • PDF

Study of Permanent Magnet Optimum Design on the PMa-SynRM (PMa-SynRM에서 영구자석 배치에 따른 최적 설계 연구)

  • Kim, Su-Yong;Kim, Won-Ho;Im, Jong-Bin;Lee, Ki-Deok;Ryu, Gwang-Hyeon;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.768_769
    • /
    • 2009
  • Average torque of PMa-SynRM(Permanent Magnet-assisted Synchronous Reluctance Motor) is changed by magnet form inserted to the barrier. Because the magnet form influences to the magnet-torque and reluctance torque. Therefore, this paper present a suitable permanent magnet form design for maximum torque when the magnet quantites are always fixed. And each motor characteristic such as average torque, torque ripple, cogging torque and back-EMF are analyzed by FEM(Finite Element Method) for optimal design..

  • PDF

Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of SynRM according to the Rated Wattage using Response Surface Methodology (반응표면법을 이용한 동기형 릴럭턴스 전동기의 고토크밀도 및 저토크리플을 위한 용량별 최적설계)

  • Choi, Yun-Chul;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1777-1781
    • /
    • 2008
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Synchronous Reluctance Motor (SynRM) according to the rated wattage using response surface methodology (RSM). The RSM has been achieved to use the experimental design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering of a number of interaction of design variables. The proposed procedure allows the definition of the rotor shape according to flux barrier number, starting from an existing motor or a preliminary design.

Optimal Rotor Shape Design of Asymmetrical Multi-Layer IPM Motors to Improve Torque Performance Considering Irreversible Demagnetization

  • Mirazimi, M.S.;Kiyoumarsi, A.;Madani, Sayed M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1980-1990
    • /
    • 2017
  • A study on the multi-objective optimization of Interior Permanent-Magnet Synchronous Motors (IPMSMs) with 2, 3, 4 and 5 flux barriers per magnetic pole, based on Genetic Algorithm (GA) is presented by considering the aspect of irreversible demagnetization. Applying the 2004 Toyota Prius single-layer IPMSM as the reference machine, the asymmetrical two-, three-, four- and five-layer rotor models with the same amount of Permanent-Magnets (PMs) is presented to improve the torque characteristics, i.e., reducing the torque pulsation and increasing the average torque. A reduction of the torque pulsations is achieved by adopting different and asymmetrical flux barrier geometries in each magnetic pole of the rotor topology. The demagnetization performance in the PMs is considered as well as the motor performance; and analyzed by using finite element method (FEM) for verification of the optimal solutions.