• Title/Summary/Keyword: Finite Element Analysis Force

Search Result 1,998, Processing Time 0.039 seconds

A numerical and theoretical investigation on composite pipe-in-pipe structure under impact

  • Wang, Yu;Qian, Xudong;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1085-1114
    • /
    • 2016
  • This paper investigates the transverse impact response for ultra lightweight cement composite (ULCC) filled pipe-in-pipe structures through a parametric study using both a validated finite element procedure and a validated theoretical model. The parametric study explores the effect of the impact loading conditions (including the impact velocity and the indenter shape), the geometric properties (including the pipe length and the dimensions of the three material layers) as well as the material properties (including the material properties of the steel pipes and the filler materials) on the impact response of the pipe-in-pipe composite structures. The global impact responses predicted by the FE procedure and by the theoretical model agree with each other closely. The parametric study using the theoretical approach indicates the close relationships among the global impact responses (including the maximum impact force and the maximum global displacement) in specimens with the equivalent thicknesses, proposed in the theoretical model, for the pipe-in-pipe composite structures. In the pipe-in-pipe composite structure, the inner steel pipe, together with the outer steel pipe, imposes a strong confinement on the infilled cement composite and enhances significantly the composite action, leading to improved impact resistance, small global and local deformations.

Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges

  • Qi, Jianan;Tang, Yiqun;Cheng, Zhao;Xu, Rui;Wang, Jingquan
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.413-421
    • /
    • 2020
  • For steel-concrete girders made composite using shear studs, initial damage on studs induced by weld defect, unexpected overloading, fatigue and others might degrade the service performance and even threaten the structural safety. This paper conducted a numerical study to investigate the static behavior of damaged stud shear connectors that were embedded in ultra high performance concrete (UHPC). Parameters included damage degree and damage location. The material nonlinear behavior was characterized by multi-linear stress-strain relationship and damage plasticity model. The results indicated that the shear strength was not sensitive to the damage degree when the damage occurred at 2/3d (d is the stud diameter) from the stud root. An increased stud area would be engaged in resisting shear force as the distance of damage location from stud root increased and the failure section becomes inclined, resulting in a less reduction in the shear strength and shear stiffness. The reduction factor was proposed to consider the degradation of the shear strength of the damaged stud. The reduction factor can be calculated using two approaches: a linear relationship and a square relationship with the damage degree corresponding to the shear strength dominated by the section area and the nominal diameter of the damaged stud. It was found that the proposed method is preferred to predict the shear strength of a stud with initial damage.

Damage Assessment of Curved Composite Laminate Structures Subjected to Low-Velocity Impact (곡률을 가진 적층복합재 구조에서의 저속충격손상 평가)

  • 전정규;권오양;이우식
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.22-32
    • /
    • 2001
  • Damage induced by low-velocity impact on the curved composite laminates was experimentally evaluated for CFRP cylindrical shells with the radius of curvatures of 50, 150, 300, and 500 mm. The result was then compared with that of flat laminates and with the results by nonlinear finite-element analysis. The radius of curvatures and the effective shell stiffness appeared to considerably affect the dynamic impact response of curved shells. Under the same impact energy level, the maximum contact force increased with the decreasing radius of curvatures, with reaching 1.5 times that for plates at the radius of curvature of 50 mm. Since the maximum contact farce is directly related to the impact damage, curved laminates can be more susceptible to delamination and less resistant to the low-velocity impact damage. Delamination was distributed rather evenly at each interface along the thickness direction of curved laminates on the contrary to the case of flat laminates, where delamination is typically concentrated at the interfaces away from the impact point. This implies that the effect of curvatures has to be considered for the design of a curved composite laminate.

  • PDF

A Biomechanical Analysis of Stress Transfer Behaviors Within the Necrotic Area of Femoral Head secondary to Changes in Core Placement Direction on Various Distributions of Necrotic Areas in the Osteonecrosis of the Femoral Head (대퇴골두 무혈성 괴사증에 있어서 괴사 영역의 위치와 천공방향의 변화에 따른 대퇴골두 괴사영역에서의 응력 변화 분석에 대한 생체역학적인 고찰)

  • Lim, D.H.;Lee, S.J.;Kim, J.S.;Shin, J.W.;Kim, Y.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.157-158
    • /
    • 1998
  • The purpose of this study was to test the hypothesis that even very small change of the cue direction in the treatment of the early osteonecrosis could affect the outcomes of operation. For this, the changes in stress transfer within the necrotic area of the femoral head were investigated under various directions and placements of the core utilizing finite element method. The loading of 3188N, which represents after-heel-strike, was imposed in cubic cosine pattern. All nodes on the most distal surface of the model were constrained in all directions. All materials included were assumed to have linear-elastic behavior. The result says that the critical stress, which causes collapse of the femoral head, was reduced when the core was oriented toward the posterior side of the femoral head regardless of location of the necrotic area. The same result was obtained either fibular bone grafting or cementation was adopted. As a consequence, the biomechanical study suggests that the core should be directed toward the loading point where the resultant force is applied to get more desirable treatment of the osteonecrosis of the femoral head in the early stage.

  • PDF

Out-of-Plane Effective Length Factor of X-Bracing System (X-브레이싱의 면외 유효 좌굴길이 계수)

  • Moon, Ji Ho;Yoon, Ki Yong;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.129-137
    • /
    • 2007
  • In this study, the elastic out-of-plane buckling load and the effective length factor of X-bracing systems were studied. Points of the intersection of diagonals were modeled as a rigid connection or a pinned connection depending on the connection method of diagonals. The boundary condition of the intersection influences the buckling load of X-bracing systems. For each boundary condition of the intersection, effective out-of-plane length factors of X-bracing systems were derived as a function of the length ratio of tension and compression diagonals $L_P$/$L_T$, the applied force ratio of tension and compression diagonals T/P, and the Euler buckling load ratio of tension and compression diagonals $P_{ET}$/$P_{EP}$. The proposed effective out-of-plane length factors of X-bracing systems were compared with the results of previous researchers and those of the finite element analysis and their properties were verified. Finally, the effects of the boundary condition of the intersection on the out-of-plane buckling load of X-bracing systems were investigated.

Numerical Prediction of Permanent Deformation of Automotive Weather Strip (자동차용 웨더스트립의 영구변형 예측)

  • Park, Joon-Chul;Min, Byung-Kwon;Oh, Jeong-Seok;Moon, Hyung-Il;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.121-126
    • /
    • 2010
  • The automotive weather strip has functions of isolating of water, dust, noise and vibration from outside. To achieve good sealing performance, weather strip should be designed to have the high contact force and wide contact area. However, these design causes excessive permanent deformation of weather strip. The causes of permanent deformation is generally explained to be the chemical material detrioration and physical variation and cyclic loading, etc. This paper introduces a numerical method to predict the permanent deformation using the time dependent viscoelastic model which is represented by Prony series in ABAQUS. Uniaxial tension and creep tests were conducted to obtain the material data. And the lab. test for the permanent deformation was accelerated during shorter time, 300 hours. The permanent deformation of weather strip was successfully predicted under the different loading conditions and different section shapes using the suggested numerical process.

Deformability of Flat Plate Subjected to Unbalanced Moment (불균형 휨모멘트를 받는 플랫 플레이트의 변형능력)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.482-493
    • /
    • 2003
  • Flat plate structures subjected to lateral load have less deformability than conventional moment frames, due to the brittle failure of plate-column connection. In the present study, parametric study using nonlinear finite element analysis was performed to investigate the deformability of flat plates. The numerical results show that as number of continuous spans increases, the deformability of flat plates considerably decreases. Therefore, existing experiments using sub-assemblages with 1 or 2 spans may overestimate the deformability of flat plates, and current design provisions based on the experiments may not be accurate in estimating the deformability. A design method estimating the deformability was developed on the basis of numerical results, and verified by comparison with existing experiment. In the proposed method, the effects of primary design parameters such as direct shear force, punching shear capacity, aspect ratio of connection, number of spans, and initial stiffness of plate can be considered.

Behavior of Weathered Soil Reinforced with Waste Tire Mat (폐타이어 매트로 보강된 풍화토지반의 거동)

  • Yoon, Yeo-Won;Cheon, Sung-Han;Heo, Seung-Bum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.4
    • /
    • pp.37-46
    • /
    • 2005
  • Waste tires can be used not only for reinforcement material due to its high capacity against tensile force but also effective for massive treatment. In order to use waste tire as reinforcing material Tread mat using tire treads only was made. Plate load tests on the embankment of decomposed granite soil reinforced with Tread mat and geogrids were conducted for comparison with the test results, respectively. And numerical analyses were performed to see the stress and stain around the reinforced material. Tread mat showed bearing capacity increase and the amount was bigger than that of commercial geogrids. Finite element analysis showed decrease of stress beneath the reinforced material and stress distribution. Finally Tread mat was proposed to use for soil reinforcement as a means of massive treatment of discarded tire.

  • PDF

Numerical Analysis and Optimum Design of Disposable Drug Infuser Using Fluid-Structure Interaction Technique (유체-구조 상호작용기법을 이용한 일회용 약물주입기의 성능 해석 및 최적 설계)

  • Kim, Heon-Young;Kim, Hak-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1595-1602
    • /
    • 2010
  • A disposable drug infuser is used to provide drugs to patients who are not hospitalized; in this infuser, an elastic recovery force is exerted by a diaphragm made of a rubber-like materialsuch that a constant amount of drugs is provided to a patient. The drug infuser has to control the speed and amount of drugs to be released, as well as the overall duration for which they are to be administered. However, in a drug infuser with an elastic diaphragm, the infusion pressure depends on the amount of drug remaining within the infuser, and the amount of drug infused gradually decreases as the amount remaining in the infuser decreases. In this study, a finite element procedure involving the application of the fluid-structure interaction technique was developed and the performance of the elastic type disposable drug infuser was analyzed. The optimum design for ensuring that the infusion pressure remains constant throughout the duration of usage, including during infusion and discharge, was determined by this procedure.

Study on the Design of Deformation Tube for 200kJ Large Energy Absorption (200kJ 대용량 에너지 흡수용 변형튜브 설계에 관한 연구)

  • Kim, Jin Mo;Lee, Jong Kil;Kim, Ki Nam
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • The market share of high-speed railway vehicles is increasing across the world. A high-performance impact energy absorption factor is essential to satisfy the safety standards of railway vehicles. A deformed tube assembly is a typical energy absorption factor in railway vehicles. The tube assembly comprises a deformed tube and a press-fitting punch, its performance depends on the absorption energy characteristics in the plastic zone of the tube. In this study, a deformed tube assembly of a railway vehicle is designed that can absorb a maximum impact energy of 200kJ under plastic deformation. Slab method and finite element analysis are used to estimate the reaction force of the punch in the initial stage, the performance of the designed tube assembly is confirmed experimentally.