• Title/Summary/Keyword: Finite Element Method

Search Result 13,453, Processing Time 0.045 seconds

Static Analysis of Actual Bridges for Application of Thin Polymer Concrete Deck Pavements (폴리머 콘크리트 박막 교면포장 적용을 위한 실제 교량 정적 해석)

  • Jeong, Young Do;Kim, Jun Hyung;Lee, Suck Hong;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.421-431
    • /
    • 2011
  • In this paper, actual bridges constructed with SMA (Stone Mastic Asphalt) deck pavement and virtual bridges substituted the deck pavement with polymer concrete under the same conditions were statically analyzed to investigate applicability of the thin polymer concrete bridge deck pavements. PSC (prestressed Concrete) girder bridge, steel box girder bridge, PSC box girder bridge, and RC (Reinforced Concrete) rahmen bridge constructed with the SMA deck pavement were analyzed and compared to evaluate various types of the bridge. The bridge deck and pavement were assumed to be fully bonded and the stress and deformation during the construction were ignored while those due to pavement weight and vehicle loading were analyzed. According to the analysis results, the stress and deformation of the bridges using the polymer concrete due to the pavement weight were smaller than those using the SMA because of smaller self weight due to lighter unit weight and thinner thickness of the pavement. The stress and deformation of the bridges using the polymer concrete due to the vehicle loading were larger than those using the SMA because of the smaller area moment of inertia due to the thinner pavement thickness. In case that the pavement weight and vehicle loading applied simultaneously, the stress and deformation of the bridges using the polymer concrete were smaller because effect of self weight reduction was more dominant. Investigation of performance of the bridge deck pavement and analysis of economical efficiency are warranted.

Stress Analysis of the Corner Part of Ship Structures Using the New Equivalent Curved Beam Theory (신(新) 등가(等價) 곡선(曲線)보 이론(理論)에 의한 선체(船體) Corner부(部)의 응력(應力) 해석(解析))

  • Chang-Doo Jang;Seung-Soo Na
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.193-201
    • /
    • 1992
  • A new equivalent curved beam theory is developed for the analysis of the corner part of ship structures, in which effects of distributed loads and asymmetricity with two or three connected parts are considered. Equivalent loads are obtained from equilibrium conditions between the distributed loads and the member forces and moments at the ends of curved beam. And an equivalent curved beam for the asymmetric structure is obtained by superposing the equivalent symmetric parts which have equivalent stiffness. From the sample calculation, it is found that the results of the new equivalent curved beam theory are well agreed with those of finite element method using membrane elements with little computing time and sufficient accuracy.

  • PDF

Fracture Simulation of UHPFRC Girder with the Interface Type Model (경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석)

  • Guo, Yi-Hong;Han, Sang-Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • This paper deals with the fracture simulation of UHPFRC girder with the interface type model. Based on the existing numerical simulation of quasi-brittle fracture in normal strength concrete, constitutive modeling for UHPFRC I-girder has been improved by including a tensile hardening at the failure surface. The finite element formulation is based on a triangular unit, constructed from constant strain triangles, with nodes along its sides and neither at the vertex nor the center of the unit. Fracture is simulated through a hardening/softening fracture constitutive law in tension, a softening fracture constitutive law in shear as well as in compression at the boundary nodes, with the material within the triangular unit remaining linear elastic. LCP is used to formulate the path-dependent hardening-softening behavior in non-holonomic rate form and a mathematical programming algorithm is employed to solve the LCP. The piece-wise linear inelastic yielding-failure/failure surface is modeled with two compressive caps, two Mohr-Coulomb failure surfaces, a tensile yielding surface and a tensile failure surface. The comparison between test results and numerical results indicates this method effectively simulates the deformation and failure of specimen.

A Study on the Measurement of Axial Cracks in the Magnetic Flux Leakage NDT System (자기누설 비파괴 검사 시스템에서 축방향 미소결함 측정에 관한 연구)

  • Kim, Hui-Min;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu;Koo, Sung-Ja
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • From among the NDT (Non-Destructive Testing) methods, the MFL (Magnetic Flux Leakage) PIG (Pipeline Inspection Gauge) is especially suitable for testing pipelines because the pipeline has high magnetic permeability. MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is difficult to detect the crack which occured by exterior-interior pressure difference in pipelines and the shape of crack is very long and narrow. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The CMFL (Circumferential MF) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). By Simulating and Measuring the magnetic leakage field, it is possible to detect of axial cracks in the pipeline.

Three-dimensional Imaging of Subsurface Structures by Resistivity Tomography (전기비저항 토모그래피에 의한 지하구조의 3차원 영상화)

  • Yi Myeong-Jong;Kim Jung-Ho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.236-249
    • /
    • 2002
  • We have extended the three-dimensional (3-D) resistivity imaging algorithm to cover the 3-D resistivity tomography problem, where resistivity data are acquired using electrodes installed in several boreholes as well as at the earth surface. The imaging algorithm consists of the 3-D finite element forward modeling and least-squares inversion scheme, where the ACB (Active Constraint Balancing) is adopted to enhance the resolving power of the inversion. Sensitivity analysis with numerical verifications shows that 3-D resistivity tomography is a very appealing method and can be used to get 3-D attitude of subsurface structures with very high-resolution. Moreover, we could accurately handle the topography effect, which could cause artifacts in the resistivity tomography. In the application of 3-D resistivity tomography to the real field data set acquired at the quarry mine, we could derive a very reasonable and accurate image of the subsurface.

A Study on the Thermo-Mechanical Stress of MEMS Device Packages (마이크로 머신(MEMS) 소자 패키지의 열응력에 대한 연구)

  • Jeon, U-Seok;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.744-750
    • /
    • 1998
  • Unlike common device, MEMS(micro-electro-mechanical system) device consists of very small mechanical structures which determine the performance of the device. Because of its small mechanical structure inside. MEMS device is very sensitive to thermal stress caused by CTE(coefficient of thermal expansion) mismatch between its components. Therefore, its characteristics are affected by material properties. process temperature. and dimensions of each layer such as chip, adhesive and substrate. In this study. we investigated the change of the thermal stress in the chip attached to a substrate. With computer-aided finite element method (FEM), the computer simulation of the thermal stress was conducted on variables such as bonding material, process temperature, bonding layer thickness and die size. The commercial simulation program, ABAQUS ver5.6, was used. Subsequently 3-layer test samples were fabricated, and their degree of bending were measured by 3-D coordinate measuring machine. The experimental results were in good agreement with the simulation results. This study shows that the bonding layer could be the source of stress or act as the buffer layer for stress according to its elastic modulus and CTE. Solder adhesive layer was the source of stress due to its high elastic modulus, therefore high compressive stress was developed in the chip. And the maximum tensile stress was developed in the adhesive layer. On the other hand, polymer adhesive layer with low elastic modulus acted as buffer layer, and resulted in lower compressive stress. The maximum tensile stress was developed in the substrate.

  • PDF

Stress Concentration Ratio According to Penetration Rate of Composite Ground Reinforced with GCP (GCP로 개량된 복합지반의 관통률에 따른 응력분담비)

  • Na, Seung-Ju;Kim, Daehyeon;Lee, Ik-Hyo;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.35-45
    • /
    • 2017
  • Gravel compaction pile (GCP) is widely used as it increases the bearing capacity of soft ground and reduces the consolidation settlement. Stress concentration ratio for design is dependent on the area replacement, surcharge pressure, depth and penetration rate. However, a range of stress concentration ratio obtained through field, laboratory experiments and numerical analysis is large. But since the main objective of the study is to evaluate the stress concentration ratio and settlement for both area replacement ratio and penetration rate through numerical analysis. Numerical analysis using the finite element program ABAQUS 6.12-4 has been performed for the composite ground with GCP. As a result, the stress concentration ratio at the points except for the point of top is in the range of 1.21-5.36, 1.19-5.45, 2.16-5.60 for 60%, 80% and 100% penetration, respectively. In general, as the penetration rate and area replacement ratio increases, the stress concentration ratio tends to increase.

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF

Stress Concentration Ratio of GCP Depending on the Mixing Ratio of Crushed Stone and Sand (GCP의 쇄석과 모래의 배합비 별 응력분담비)

  • Na, Seung-Ju;Kim, Min-Seok;Park, Kyung-Ho;Kim, Daehyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.37-50
    • /
    • 2016
  • Gravel compaction pile (GCP) is widely used as it increases the bearing capacity of soft ground and reduces the consolidation settlement. Stress concentration ratio for GCP design is dependent on the area replacement, surcharge pressure and depth. However, a range of stress concentration ratio obtained through field, laboratory experiments and numerical analysis is large. Little study has been done on the stress concentration ratio for the mixing ratio of gravel and sand. The main objective of the study is to evaluate the stress concentration ratio for both area replacement ratio and mixing ratio through literature review and numerical analysis. Numerical analysis using the finite element program ABAQUS 6.12-4 has been performed for the composite ground with GCP. The excess pore water pressure and stress concentration ratio of composite ground have been analyzed for both the area replacement ratio and the mixing ratio. Based on the previous research results, a range of stress concentration ratio obtained from the field tests, laboratory tests, numerical analysis on the GCP studies is found to be 1.7-3.2, 2.0-7.5 and 2.0-6.5, respectively. Based on the numerical analysis results, as the area replacement ratio increases, the stress concentration ratio increases up to 30% and then decreases at 40%. Also, the stress concentration ratio tends to increase up to 70:30 and then to decrease after 60:40.