• Title/Summary/Keyword: Finite

Search Result 30,220, Processing Time 0.044 seconds

Is it shear locking or mesh refinement problem?

  • Ozdemir, Y.I.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.181-199
    • /
    • 2014
  • Locking phenomenon is a mesh problem and can be staved off with mesh refinement. If the studier is not preferred going to the solution with increasing mesh size or the computer memory can stack over flow than using higher order plate finite element or using integration techniques is a solution for this problem. The purpose of this paper is to show the shear locking phenomenon can be avoided by increase low order finite element mesh size of the plates and to study shear locking-free analysis of thick plates using Mindlin's theory by using higher order displacement shape function and to determine the effects of various parameters such as the thickness/span ratio, mesh size on the linear responses of thick plates subjected to uniformly distributed loads. A computer program using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the analysis, 4-, 8- and 17-noded quadrilateral finite elements are used. It is concluded that 17-noded finite element converges to exact results much faster than 8-noded finite element, and that it is better to use 17-noded finite element for shear-locking free analysis of plates.

Computer Simulation of Complex Hot Forging Processes by a Forging Simulator Based on Finite Volume Method (유한체적법에 근거한 단조공정 시뮬레이터를 이용한 난형상 열간단조 공정의 컴퓨터 시뮬레이션)

  • Kim, B.T.;Eom, J.G.;Choi, I.S.;Lee, M.C.;Park, S.Y.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.187-192
    • /
    • 2007
  • The finite volume method for forging simulation is examined to reveal its possibility as well as its problem in this paper. For this study, the finite volume method based MSC/SuperForge and the finite element method based AFDEX are employed. The simulated results of the homogeneous compression obtained by the two softwares are compared to indicate the problems of the finite volume method while several application examples are given to show the possibility of the finite volume method fur simulation of complex hot forging processes. It is shown that the finite volume method can not predict the exact solution of the homogeneous compression especially in terms of forming load and deformed shape but that it is helpful to simulate very complex forging processes which can hardly be simulated by the conventional finite element method.

Arithmetic of finite fields with shifted polynomial basis (변형된 다항식 기저를 이용한 유한체의 연산)

  • 이성재
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.4
    • /
    • pp.3-10
    • /
    • 1999
  • More concerns are concentrated in finite fields arithmetic as finite fields being applied for Elliptic curve cryptosystem coding theory and etc. Finite fields arithmetic is affected in represen -tation of those. Optimal normal basis is effective in hardware implementation and polynomial field which is effective in the basis conversion with optimal normal basis and show that the arithmetic of finite field with the basis is effective in software implementation.

A STABILIZED CHARACTERISTIC FINITE VOLUME METHOD FOR TRANSIENT NAVIER-STOKES EQUATIONS

  • Zhang, Tong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1205-1219
    • /
    • 2011
  • In this work, a stabilized characteristic finite volume method for the time-dependent Navier-Stokes equations is investigated based on the lowest equal-order finite element pair. The temporal differentiation and advection term are dealt with by characteristic scheme. Stability of the numerical solution is derived under some regularity assumptions. Optimal error estimates of the velocity and pressure are obtained by using the relationship between the finite volume and finite element methods.

Enumerations of Finite Topologies Associated with a Finite Simple Graph

  • Kim, Dongseok;Kwon, Young Soo;Lee, Jaeun
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.655-665
    • /
    • 2014
  • The number of topologies (non-homeomorphic topologies) on a fixed finite set having n elements are now known up to n = 18 (n = 16 respectively) but still no complete formula yet. There are one to one correspondences among topologies, preorders and transitive digraphs on a given finite set. In this article, we enumerate topologies and non-homeomorphic topologies whose underlying graph is a given finite simple graph.

Buckling of thin-walled members analyzed by Mindlin-Reissner finite strip

  • Cuong, Bui H.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.77-91
    • /
    • 2013
  • The paper presents the formulation of 3-nodal line semi-analytical Mindlin-Reissner finite strip in the buckling analysis of thin-walled members, which are subjected to arbitrary loads. The finite strip is simply supported in two opposite edges. The general loading and in-plane rotation techniques are used to develop this finite strip. The linear stiffness matrix and the geometric stiffness matrix of the finite strip are given in explicit forms. To validate the proposed model and study its performance, numerical examples of some thin-walled sections have been performed and the results obtained have been compared with finite element models and the published ones.

Design of the PID Controller Using Finite Alphabet Optimization (유한 알파벳 PID제어기 설계)

  • Yang, Yun-Hyuck;Kwon, Oh-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.647-649
    • /
    • 2004
  • When a controller is implemented by a one-chip processor with fixed-point operations, the finite alphabet problem usually occurs since parameters and signals should be taken in a finite set of values. This paper formulates PID finite alphabet PID control problem which combines the PID controller with the finite alphabet problem. We will propose a PID parameter tuning method based on an optimization algorithm under the finite alphabet condition. The PID parameters can be represented by a fixed-point representation, and then the problem is formulated as an optimization with constraints that parameters are taken in the finite set. Some simulation are to be performed to exemplify the performance of the PID parameter tuning method proposed in this paper.

  • PDF

Verification of Finite Element Model Using the Almen Strip Test and Its Applications to Calculate Residual Stress Distribution (알멘 스트립 시험 모사를 이용한 유한요소모델의 유효성 검증 및 잔류응력분포 계산)

  • Yang, Z.R.;Park, S.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.172-178
    • /
    • 2012
  • We performed a shot peening test and used a 2-D finite element model which predicts the compressive residual stress distribution below the material's surface. In this study, the concept of 'impact cycle' is introduced to account for the irregularity in the shot's impact position during testing. The impact cycle was imbedded in the finite element model. In the shot peening test, shot bombarded a type-A Almen strip surface with different impact velocities. To verify the proposed finite element model, we compared the deformed cross sectional shape of the Almen strips with the shapes computed by the proposed finite element model. Good agreement was noted between measurements and the finite element model predictions. With the verified finite element model, a series of finite element simulations was conducted to compute the residual stress distribution below the material's surface and the characteristics of these distributions are discussed.

A Generalized Finite Difference Method for Solving Fokker-Planck-Kolmogorov Equations

  • Zhao, Li;Yun, Gun Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.816-826
    • /
    • 2017
  • In this paper, a generalized discretization scheme is proposed that can derive general-order finite difference equations representing the joint probability density function of dynamic response of stochastic systems. The various order of finite difference equations are applied to solutions of the Fokker-Planck-Kolmogorov (FPK) equation. The finite difference equations derived by the proposed method can greatly increase accuracy even at the tail parts of the probability density function, giving accurate reliability estimations. Compared with exact solutions and finite element solutions, the generalized finite difference method showed increasing accuracy as the order increases. With the proposed method, it is allowed to use different orders and types (i.e. forward, central or backward) of discretization in the finite difference method to solve FPK and other partial differential equations in various engineering fields having requirements of accuracy or specific boundary conditions.

Improving the eigenvalue using higher order elements without re-solving

  • Stephen, D.B.;Steven, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.385-398
    • /
    • 1997
  • High order finite element have a greater convergence rate than low order finite elements, and in general produce more accurate results. These elements have the disadvantage of being more computationally expensive and often require a longer time to solve the finite element analysis. High order elements have been used in this paper to obtain a new eigenvalue solution with out re-solving the new model. The optimisation of the eigenvalue via the differentiation of the Rayleigh quotient has shown that the additional nodes associated with the higher order elements can be condensed out and solved using the original finite element solution. The higher order elements can then be used to calculate an improved eigenvalue for the finite element analysis.