• Title/Summary/Keyword: Fingerprinting Methods

Search Result 83, Processing Time 0.019 seconds

Indoor Positioning System Using Fingerprinting Technique (Fingerprinting기법을 이용한 실내 위치측위시스템)

  • Nam, Doo-Hee;Han, Ho-Yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • According to the ubiquitous trend, the needs for the context based application service have been increased. These services take on Location Based Service which is based on the current location of users. It is widely used that localization techniques use GPS or ground wave and more efficient and accurate methods have been studied. Recently, not only services which targeted outdoor but also services which targeted indoor, for example home services and facility guidance of the building come into the spotlight. In case of the outdoor positioning area, COTH (Commercial Off-The-Shelf) has been released and used but relatively it doesn't produce an outcome in the indoor positioning area. Therefore, this paper Proposes the indoor positioning technique using wireless LAN (Local Area Network) which is one of the widely used wireless communication technique. It analyzes the typical WLAN location positioning methodology has been studied and their advantage and disadvantage also suggests how to design and implement the specific WLAN positioning system. In addition, it suggests new methods that progress the accuracy of the existing systems and improve the efficient computation.

  • PDF

Genetic Analysis study of Sasang Constitution Classification by DNA-fingerprinting methods (유전자지문법을 이용한 사상체질의 유전적 분석 연구)

  • Cho, DongWuk;Lee, ChangSoo;Ko, ByungHee;Cho, HwangSung
    • Journal of Sasang Constitutional Medicine
    • /
    • v.8 no.2
    • /
    • pp.151-163
    • /
    • 1996
  • VNTR and STR DNA typing are typical genetic analysis methods which are widely used in DNA-fingerprinting for forensic science and other genetic research purposes. In this study, genomic DNA of different constitutions(Taeun, Soyang and Soum) were analyzed by VNTR and STR DNA typing to provide scientific and objective references for Sasang Medicine. It was found out in this study that VNTR-MCT118 and YNZ22 loci showed too many different variation of allele distribution and numbers for each constitution. Therefore, it is thought that VNTR typing can not used for genetic classification study for Sasang Constitution which classifies human body into 4 groups. However, vWA locus, one of the STR loci investigated in this study, showed slight difference in allele distribution for each different constitution.

  • PDF

Feasibility of Novel Three-Dimensional Magnetic Resonance Fingerprinting of the Prostate Gland: Phantom and Clinical Studies

  • Dongyeob Han;Moon Hyung Choi;Young Joon Lee;Dong-Hyun Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1332-1340
    • /
    • 2021
  • Objective: To evaluate the feasibility of a new three-dimensional (3D) MR fingerprinting (MRF) technique for the prostate gland by conducting phantom and clinical studies. Materials and Methods: The new 3D MRF technique used in this study enables quick data acquisition and has a high resolution. For the phantom study, the MRF T1 and T2 values in an in-house phantom were compared with those of goldstandard mapping methods using linear regression analysis. For the clinical study, we evaluated 90 patients who underwent prostate imaging with MRF for suspected prostate cancer between September 2019 and February 2020. The mean T1 and T2 values were compared in the peripheral zone, transition zone, and focal lesions using paired t tests. The differences in the T1 and T2 values according to cancer aggressiveness were evaluated using one-way analysis of variance. Results: In the phantom study, the MRF T1 and T2 values showed a perfect correlation with the gold-standard T1 and T2 values (R > 0.99). In the clinical study, the T1 and T2 values in the peripheral zone were significantly higher than those in the transitional zone (p < 0.001, both). The T1 and T2 values in prostate cancer were significantly lower than those in the peripheral and transitional zones. The higher the grade of cancer, the lower the T2 values. Conclusion: The T1 and T2 values obtained from the 3D MRF showed a perfect correlation with the gold standard values in the phantom study. Differences in the T1 and T2 values among the different zones of the prostate gland were identified using 3D MRF in patients.

A Robust Video Fingerprinting Algorithm Based on Centroid of Spatio-temporal Gradient Orientations

  • Sun, Ziqiang;Zhu, Yuesheng;Liu, Xiyao;Zhang, Liming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2754-2768
    • /
    • 2013
  • Video fingerprints generated from global features are usually vulnerable against general geometric transformations. In this paper, a novel video fingerprinting algorithm is proposed, in which a new spatio-temporal gradient is designed to represent the spatial and temporal information for each frame, and a new partition scheme, based on concentric circle and rings, is developed to resist the attacks efficiently. The centroids of spatio-temporal gradient orientations (CSTGO) within the circle and rings are then calculated to generate a robust fingerprint. Our experiments with different attacks have demonstrated that the proposed approach outperforms the state-of-the-art methods in terms of robustness and discrimination.

Application of Methodology for Microbial Community Analysis to Gas-Phase Biofilters (폐가스 처리용 바이오필터에 미생물 군집 분석 기법의 적용)

  • Lee, Eun-Hee;Park, Hyunjung;Jo, Yun-Seong;Ryu, Hee Wook;Cho, Kyung-Suk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.147-156
    • /
    • 2010
  • There are four key factors for gas-phase biofilters; biocatalysts(microorganisms), packing materials, design/operating techniques, and diagnosis/management techniques. Biofilter performance is significantly affected by microbial community structures as well as loading conditions. The microbial studies on biofilters are mostly performed on basis of culture-dependent methods. Recently, advanced methods have been proposed to characterize the microbial community structure in environmental samples. In this study, the physiological, biochemical and molecular methods for profiling microbial communities are reviewed, and their applicability to biofilters is discussed. Community-level physiological profile is based on the utilization capability of carbon substrate by heterotrophic community in environmental samples. Phospholipid fatty acid analysis method is based on the variability of fatty acids present in cell membranes of different microorganisms. Molecular methods using DNA directly extracted from environmental samples can be divided into "partial community DNA analysis" and "whole community DNA analysis" approaches. The former approaches consist in the analysis of PCR-amplified sequence, the genes of ribosomal operon are the most commonly used sequences. These methods include PCR fragment cloning and genetic fingerprinting such as denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism, ribosomal intergenic spacer analysis, and random amplified polymorphic DNA. The whole community DNA analysis methods are total genomic cross-DNA hybridization, thermal denaturation and reassociation of whole extracted DNA and extracted whole DNA fractionation using density gradient.

High Resolution 3D Magnetic Resonance Fingerprinting with Hybrid Radial-Interleaved EPI Acquisition for Knee Cartilage T1, T2 Mapping

  • Han, Dongyeob;Hong, Taehwa;Lee, Yonghan;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.141-155
    • /
    • 2021
  • Purpose: To develop a 3D magnetic resonance fingerprinting (MRF) method for application in high resolution knee cartilage PD, T1, T2 mapping. Materials and Methods: A novel 3D acquisition trajectory with golden-angle rotating radial in kxy direction and interleaved echo planar imaging (EPI) acquisition in the kz direction was implemented in the MRF framework. A centric order was applied to the interleaved EPI acquisition to reduce Nyquist ghosting artifact due to field inhomogeneity. For the reconstruction, singular value decomposition (SVD) compression method was used to accelerate reconstruction time and conjugate gradient sensitivity-encoding (CG-SENSE) was performed to overcome low SNR of the high resolution data. Phantom experiments were performed to verify the proposed method. In vivo experiments were performed on 6 healthy volunteers and 2 early osteoarthritis (OA) patients. Results: In the phantom experiments, the T1 and T2 values of the proposed method were in good agreement with the spin-echo references. The results from the in vivo scans showed high quality proton density (PD), T1, T2 map with EPI echo train length (NETL = 4), acceleration factor in through plane (Rz = 5), and number of radial spokes (Nspk = 4). In patients, high T2 values (50-60 ms) were seen in all transverse, sagittal, and coronal views and the damaged cartilage regions were in agreement with the hyper-intensity regions shown on conventional turbo spin-echo (TSE) images. Conclusion: The proposed 3D MRF method can acquire high resolution (0.5 mm3) quantitative maps in practical scan time (~ 7 min and 10 sec) with full coverage of the knee (FOV: 160 × 160 × 120 mm3).

Indoor Path Recognition Based on Wi-Fi Fingerprints

  • Donggyu Lee;Jaehyun Yoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.91-100
    • /
    • 2023
  • The existing indoor localization method using Wi-Fi fingerprinting has a high collection cost and relatively low accuracy, thus requiring integrated correction of convergence with other technologies. This paper proposes a new method that significantly reduces collection costs compared to existing methods using Wi-Fi fingerprinting. Furthermore, it does not require labeling of data at collection and can estimate pedestrian travel paths even in large indoor spaces. The proposed pedestrian movement path estimation process is as follows. Data collection is accomplished by setting up a feature area near an indoor space intersection, moving through the set feature areas, and then collecting data without labels. The collected data are processed using Kernel Linear Discriminant Analysis (KLDA) and the valley point of the Euclidean distance value between two data is obtained within the feature space of the data. We build learning data by labeling data corresponding to valley points and some nearby data by feature area numbers, and labeling data between valley points and other valley points as path data between each corresponding feature area. Finally, for testing, data are collected randomly through indoor space, KLDA is applied as previous data to build test data, the K-Nearest Neighbor (K-NN) algorithm is applied, and the path of movement of test data is estimated by applying a correction algorithm to estimate only routes that can be reached from the most recently estimated location. The estimation results verified the accuracy by comparing the true paths in indoor space with those estimated by the proposed method and achieved approximately 90.8% and 81.4% accuracy in two experimental spaces, respectively.

The Relative Identification of C. officinale and L. chuanxiong by PCR-Mediated Fingerprinting (천궁류(川芎類) 한약재의 유전자 감식 연구)

  • Choi, Ho-Young;Kim, Dong-Wook;Kim, Dong-Eun;Suh, Young-Bae;Ham, In-Hye
    • The Korea Journal of Herbology
    • /
    • v.20 no.4
    • /
    • pp.151-161
    • /
    • 2005
  • Objectives : Our research purpose is to establish the standard identification analysis on C. officinale and L. chuanxiong in Korea and China by PCR-mediated fingerprinting. Methods : The Restriction Fragment Length Polymorphism (RFLP) and Randomly Amplified Polymorphic DNA (RAPD) method was used on Internal Transcribed Spacer (ITS) regions and rbcL regions to compare and discriminate genes extracted from crude drugs as C. officinale and L. chuanxiong in Korea and China. Results : L. chuanxiong Korea and China have very similar polymorphism, whereas L. chuanxiong in Korea and C. officinale have very different polymorphism in RFLP. And restriction enzymes AluI and SacI forms the specific fragment band only in C. officinale, they can be used as RFLP marker on ITS regions to discriminate among the species. Conclusions : The results could be applied in discriminating crude drugs among C. officinale and L. chuanxiong in Korea and China. Also they could be used in controlling drug quality, preserving medicinal plants, and improving plant description.

  • PDF

Wifi Fingerprint Calibration Using Semi-Supervised Self Organizing Map (반지도식 자기조직화지도를 이용한 wifi fingerprint 보정 방법)

  • Thai, Quang Tung;Chung, Ki-Sook;Keum, Changsup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.536-544
    • /
    • 2017
  • Wireless RSSI (Received Signal Strength Indication) fingerprinting is one of the most popular methods for indoor positioning as it provides reasonable accuracy while being able to exploit existing wireless infrastructure. However, the process of radio map construction (aka fingerprint calibration) is laborious and time consuming as precise physical coordinates and wireless signals have to be measured at multiple locations of target environment. This paper proposes a method to build the map from a combination of RSSIs without location information collected in a crowdsourcing fashion, and a handful of labeled RSSIs using a semi-supervised self organizing map learning algorithm. Experiment on simulated data shows promising results as the method is able to recover the full map effectively with only 1% RSSI samples from the fingerprint database.

Fingerprinting Differentiation of Astragalus membranaceus Roots According to Ages Using 1H-NMR Spectroscopy and Multivariate Statistical Analysis

  • Shin, Yoo-Soo;Bang, Kyong-Hwan;In, Dong-Su;Sung, Jung-Sook;Kim, Seon-Young;Ku, Bon-Cho;Kim, Suk-Weon;Lee, Dong-Ho;Choi, Hyung-Kyoon
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.133-137
    • /
    • 2009
  • The root of Astragalus membranaceus is a traditional folk medicine that has been used for many therapeutic purposes in Asia. It reportedly acts as an immunostimulant, tonic, hepatoprotective, diuretic, antidiabetic, analgesic, expectorant, sedative, and anticancer drug. In this study, metabolomic profiling was applied to the roots of A. membranaceus of different ages using NMR coupled with two multivariate statistical analysis methods: such as principal components analysis (PCA) and canonical discriminant analysis (CDA). This allowed various metabolites to be assigned in NMR spectra, including $\gamma$-aminobutyric acid (GABA), aspartic acid, succinic acid, glutamic acid, glutamine, N-acetyl aspartic acid, acetic acid, arginine, alanine, threonine, lactic acid, and valine. The score plot from PCA and also CDA allowed a clear separation between samples according to age.