• Title/Summary/Keyword: Fingerprint verification

Search Result 78, Processing Time 0.029 seconds

Robust Watermarking for Compressed Video Using Fingerprints and Its Applications

  • Jung, Soo-Yeun;Lee, Dong-Eun;Lee, Seong-Won;Paik, Joon-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.794-799
    • /
    • 2008
  • This paper presents a user identification method at H.264 streaming using watermarking with fingerprints. The watermark can efficiently reduce the potential danger of forgery or alteration. Especially a biometric watermark has convenient, economical advantages. The fingerprint watermark can also improve reliability of verification using automated fingerprint identification systems. These algorithms, however, are not robust against common video compression. To overcome this problem, we analyze H.264 compression pattern and extract watermark after restoring damaged watermark using various filters. The proposed algorithm consists of enhancement of a fingerprint image, watermark insertion using discrete wavelet transform and extraction after restoring. The proposed algorithm can achieve robust watermark extraction against H.264 compressed videos.

Faster Fingerprint Matching Algorithm Using GPU (GPU를 이용한 보다 빠른 지문 인식 알고리즘)

  • Riaz, Sidra;Lee, Sang-Woong
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.43-45
    • /
    • 2012
  • This paper is based on embedding the biometrics techniques on GPU for better computational efficiency and fast matching process using the parallel nature of the GPU processors to compare thousands of images for fingerprint recognition in a fraction of a second. In this paper we worked on GPU (INVIDIA GeForce GTX 260 with compute capability 1.3 and dual core-2-dou processor) for fingerprint matching and found that the efficiency is better than the results with related work already done on CMOS, CPU, ARM9, MATLAB Neural Networks etc which shows the better performance of our system in terms of computational time. The features matching process proposed for fingerprint recognition and the verification procedure is done on 5,000 images which are available online in the databases FVC2000, 2002, 2004 [1].

  • PDF

Development of an Inspection System of Contact Light Emitting Device for Quality Control

  • Lee, Jun-Ho;Kwon, Hyung-Kee;Ryu, Young-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.118.3-118
    • /
    • 2001
  • CLED (Contact Light Emitting Device) has three layers consisting of a transparent electrode, a light emitting layer and a substrate. When the substrate of the CLED comes in contact with a fingerprint under AC input voltage, it makes an electric field between the fingerprint and the device. Due to the electric field, the light is emitted along the ridgeline of the fingerprint. The intensity along the ridge on the surface of the CLED increase in proportion to the electric field. To achieve uniform performance of fingerprint verification devices, inspection system of CLED for quality control were required. In this research, we proposed the factors for quality controls such as dimensions of the CLED, uniformity ...

  • PDF

An ASIC Implementation of Fingerprint Thinning Algorithm

  • Jung, Seung-Min
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.716-720
    • /
    • 2010
  • This paper proposes an effective fingerprint identification system with hardware block for thinning stage processing of a verification algorithm based on minutiae with 39% occupation of 32-bit RISC microprocessor cycle. Each step of a fingerprint algorithm is analyzed based on FPGA and ARMulator. This paper designs an effective hardware scheme for thinning stage processing using the Verilog-HDL in $160{\times}192$ pixel array. The ZS algorithm is applied for a thinning stage. The logic is also synthesized in $0.35{\mu}m$ 4-metal CMOS process. The layout is performed based on an auto placement-routing and post-simulation is performed in logic level. The result is compared with a conventional one.

Parallel Processing of the Fuzzy Fingerprint Vault based on Geometric Hashing

  • Chae, Seung-Hoon;Lim, Sung-Jin;Bae, Sang-Hyun;Chung, Yong-Wha;Pan, Sung-Bum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1294-1310
    • /
    • 2010
  • User authentication using fingerprint information provides convenience as well as strong security. However, serious problems may occur if fingerprint information stored for user authentication is used illegally by a different person since it cannot be changed freely as a password due to a limited number of fingers. Recently, research in fuzzy fingerprint vault system has been carried out actively to safely protect fingerprint information in a fingerprint authentication system. In addition, research to solve the fingerprint alignment problem by applying a geometric hashing technique has also been carried out. In this paper, we propose the hardware architecture for a geometric hashing based fuzzy fingerprint vault system that consists of the software module and hardware module. The hardware module performs the matching for the transformed minutiae in the enrollment hash table and verification hash table. On the other hand, the software module is responsible for hardware feature extraction. We also propose the hardware architecture which parallel processing technique is applied for high speed processing. Based on the experimental results, we confirmed that execution time for the proposed hardware architecture was 0.24 second when number of real minutiae was 36 and number of chaff minutiae was 200, whereas that of the software solution was 1.13 second. For the same condition, execution time of the hardware architecture which parallel processing technique was applied was 0.01 second. Note that the proposed hardware architecture can achieve a speed-up of close to 100 times compared to a software based solution.

Matching Performance-Based Comparative Study of Fingerprint Sample Quality Measures (매칭성능 기반의 지문샘플 품질측정방법에 관한 비교연구)

  • Jin, Chang-Long;Kim, Hak-Il;Elliott, Stephen
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.3
    • /
    • pp.11-25
    • /
    • 2009
  • Fingerprint sample quality is one of major factors influencing the matching performance of fingerprint recognition systems. The error rates of fingerprint recognition systems can be decreased significantly by removing poor quality fingerprints. The purpose of this paper is to assess the effectiveness of individual sample quality measures on the performance of minutiae-based fingerprint recognition algorithms. Initially, the authors examined the various factors that influenced the matching performance of the minutiae-based fingerprint recognition algorithms. Then, the existing measures for fingerprint sample quality were studied and the more effective quality measures were selected and compared with two image quality software packages, (NFIQ from NIST, and QualityCheck from Aware Inc.) in terms of matching performance of a commercial fingerprint matcher (Verifinger 5.0 from Neurotechnologija). The experimental results over various Fingerprint Verification Competition (FVC) datasets show that even a single sample quality measure can enhance the matching performance effectively.

Protecting Fingerprint Data for Remote Applications (원격응용에 적합한 지문 정보 보호)

  • Moon, Dae-Sung;Jung, Seung-Hwan;Kim, Tae-Hae;Lee, Han-Sung;Yang, Jong-Won;Choi, Eun-Wha;Seo, Chang-Ho;Chung, Yong-Wha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.6
    • /
    • pp.63-71
    • /
    • 2006
  • In this paper, we propose a secure solution for user authentication by using fingerprint verification on the sensor-client-server model, even with the client that is not necessarily trusted by the sensor holder or the server. To protect possible attacks launched at the untrusted client, our solution makes the fingerprint sensor validate the result computed by the client for the feature extraction. However, the validation should be simple so that the resource-constrained fingerprint sensor can validate it in real-time. To solve this problem, we separate the feature extraction into binarization and minutiae extraction, and assign the time-consuming binarization to the client. After receiving the result of binarization from the client, the sensor conducts a simple validation to check the result, performs the minutiae extraction with the received binary image from the client, and then sends the extracted minutiae to the server. Based on the experimental results, the proposed solution for fingerprint verification can be performed on the sensor-client-server model securely and in real-time with the aid of an untrusted client.

An Efficient Fingerprint Classification using Gabor Filter (Gabor 필터를 이용한 효율적인 지문분류)

  • Shim, Hyun-Bo;Park, Young-Bae
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.29-34
    • /
    • 2002
  • Fingerprint recognition technology was studied by classification and matching. In general, there are five different classifications left loop, right loop, whore, arch, and tented-arch. These classifications are used to determine which class an individual's fingerprint belong to, thereby identifying the individual's fingerprint pattern. The result of this classification, which is sent to the large fingerprint database as an index, helps reduce the matching time and enhance the accuracy of fingerprint matching. The existing fingerprint classification method relies on the number and location of cores and delta points called singular points. The drawback of this method is the lack of accuracy stemming from the classification difficulty involving unclear and/or partially-erased fingerprints. The current paper presents an efficient classification method to rectify the problem associated with identifying Singular points from unclear fingerprints. This method, which is based on Gabor filter's unique characteristics for magnifying directional patterns and frequency range selections, improves fingerprint classification accuracy significantly. In this paper, this method is described and its test result is presented for verification.

Hardware Implementation of the Fuzzy Fingerprint Vault System (지문 퍼지볼트 시스템의 하드웨어 구현)

  • Lim, Sung-Jin;Chae, Seung-Hoon;Pan, Sung-Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.2
    • /
    • pp.15-21
    • /
    • 2010
  • The user authentication using fingerprint information not only provides the convenience but also high security. However, the fingerprint information for user authentication can cause serious problems when it has been compromised. It cannot change like passwords, because the user only has ten fingers on two hands. Recently, there is an increasing research of the fuzzy fingerprint vault system to protect fingerprint information. The research on the problem of fingerprint alignment using geometric hashing technique carried out. This paper proposes the hardware architecture fuzzy fingerprint vault system based on geometric hashing. The proposed architecture consists of software and hardware module. The hardware module has charge of matching between enrollment hash table and verification hash table. Based on the experimental results, the execution time of the proposed system with 36 real minutiae is 0.2 second when 100 chaff minutiae, 0.53 second when 400 chaff minutiae.

Availability Verification of Integration OTP Framework using Biometrics Information (바이오매트릭스 정보를 이용한 모바일 기반의 통합 OTP 프레임워크의 유효성 검증)

  • Cha, Byung-Rae;Kim, Nam-Ho;Kim, Jong-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.39-53
    • /
    • 2011
  • As the applications within Mobile devices becoming more extensive, the mobile communication security issues of these applications and researches are appearing to be the most important concern. In this paper, we propose new integration OTP framework technique which uses the fingerprint and voice features of biometrics in order to generate Mobile One Time Passwords (OTPs) Token. The fingerprint and voice are considered to be one of the powerful personal authentication factors of biometrics and it can be used for generating variable passwords based on mobile environments for one time use. However, we performed a simulation of homomorphic variability of fingerprint and voice feature points using dendrogram and distribution of fingerprint and voice feature points for proposed password generation method, and verified validation of availability.