• Title/Summary/Keyword: Fines

Search Result 289, Processing Time 0.022 seconds

Public Attitude Survey on Traffic Fine Policy (교통과태료제도에 대한 국민의식조사 분석)

  • Kim, Yeon-Soo
    • Korean Security Journal
    • /
    • no.37
    • /
    • pp.51-82
    • /
    • 2013
  • Traffic safety has been dramatically enhanced thanks to recent improvements in traffic environment. Nonetheless, many traffic accidents occur due to unchanging driving practices. Therefore, this study addresses the issues of traffic fine and penalty fine policies, and seek appropriate levels of traffic fines through a public attitude survey. For this purpose, a survey was conducted on 905 adult drivers over 20 years of age from 15 provinces and metropolitan cities. Analysis results are as follows. First, traffic environment in South Korea is generally not safe. Respondents perceive violation of traffic laws such as reckless driving, speeding and drunk and driving as an important cause. Second, 61.6% of respondents experienced over one speeding annually, but only 15.2% of respondents were caught in the last three years. Third, opposition to levels of traffic fines has decreased over the past, and responses were more positive when more information was provided. Fourth, to deter moral hazard of paying traffic fines to avoid traffic penalty points, traffic fines should be at least 50,000~70,000 won higher than penalty fines. Fifth, there was less opposition to implementation of accumulated penalty policy compared to income-based differential fine levels. Sixth, traffic fines for different types of traffic violations need to be reorganized. In conclusion, this study suggests the following policy improvements for the current traffic fine and penalty fine policies for violation of traffic laws. First, enough understanding and consensus must be developed for policy improvements. Second, administrative sanctions such as giving penalty points should be considered rather than financial sanctions. Third, there should be policy improvement for accumulative penalty. Current acts of traffic law violation should be reorganized.

  • PDF

Evaluation of Mechanical Characteristics and Applicability of Clayey Sand by Fines Content (세립분 함유율에 따른 점토질 모래의 역학적 특성 및 적용성 평가)

  • Jung-Meyon Kim;Jun-Young Ahn;Jae-young Heo;Seung-Joo Lee;Young-Seok Kim;Beom-Soo Moon;Yong-Seong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.47-59
    • /
    • 2023
  • In this research, laboratory tests were conducted on clayey sand (SC) to analyze its physical properties, compaction/permeability characteristics, and stress-strain behavior. The main objective was to determine the transitional fines content at which the mechanical properties of sand transition to those of clay, resulting in a change in the geotechnical behavior of the material. Additionally, to assess the practical applicability of SC soil, field data from a soft ground improvement site with significant settlement issues were collected. The settlement characteristics derived from laboratory tests and numerical simulations were then compared and analyzed in relation to the actual settlement data obtained from the field, aiming to evaluate the suitability of the SC soil as a compaction target layer. The laboratory tests and compaction analysis showed that the SC soil exhibited a distinct change in mechanical properties, shifting from sandy behavior to clayey behavior when the fines content exceeded 25%. This transition in mechanical behavior was found to be closely correlated with the content of clay particles within the material. Through numerical simulations of the soft ground site, it was verified that the use of clayey sand with a fines content exceeding the transitional level as a compaction target layer resulted in settlements that closely aligned with the measured settlements, with an average agreement of 91.2%. Based on these findings, it is deemed advisable to incorporate clayey sand with a fines content exceeding the transitional level as part of the compaction target layer in the design of soft ground improvements.

Effect of Fine Content on the Monotonic Shear Behavior of Sand-Clay Mixtures (점토와 모래의 혼합토의 정적 전단거동에 대한 세립분 함유율의 영향)

  • Kim, Uk-Gie;Masayuki, Hyodo;Beak, Won-Jin;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.91-100
    • /
    • 2007
  • In most design codes, soils are classified as either sand or clay, and appropriate design equations are used to represent their behavior. For example, the behavior of sandy soils is expressed in terms of the relative density, whereas consistency limits are often used for clays. However, sand-clay mixtures, which are typically referred to as intermediate soils, cannot be easily categorized as either sand or clay and therefore a unified interpretation of how the soil will behave at the transition point, i.e., from sandy behavior when fines are low to clay behavior for high fines content, is necessary. In this study, active natural clays are mixed with sand, and the fines content varied in order to produce different structures, ranging from one state where only sand particles form the soil structure to another where the matrix of fines make-up the structure. While paying attention to the granular void ratio in order to clarify the shear properties of sand-clay mixtures with increasing fines content monotonic, shear tests were performed on isotropically, and anisotropically consolidated specimens. From the test results, it was observed that the monotonic shear strength of sand-clay mixtures is dependent on the granular void ratio.

Effects of Recycling on the Adsorption of Cationic Polyacrylamide onto Fiber and Fines (리사이클링 횟수에 따른 장섬유와 미세섬유의 폴리아크릴아미드 흡착특성 및 종이의 물성 변화)

  • 주성범;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 1999
  • Adsorption of polymeric flocculants and dry strength agents onto the surface of papermaking fibers is critical for their effective utilization since the polymeric substances not adsorbed on fibers or fines keep recirculating in the papermaking system to cause various operational difficulties and loss of raw materials. Problems associated with the unadsorbed polymeric substances generate great attention because unprecedent interests in utilization of recycled papers and papermaking system closure. In this study, to understand the effects of recycling on the adsorption propensity of cationic polyacryamide (PAM) dry strength resin onto hardwood bleached kraft pulp fibers and fines a systematic approach was followed. Never dried bleached hardwood kraft pulp was recycled in two different ways. In mode one recycling experiment never dried pulp was beaten then recycled three times by employing simple drying and disintegrating steps. In mode two recycling experiment beating of the recycled pulp was carried out after each recycling step. Adsorption of cationic PAM on fibers and fines was evaluated employing Kjeldahl nitrogen analysis method. The influence of recycling on water retention value, carboxyl content, sheet density and tensile strength of the pulp was examined. As the number of recycling increased, water retention value of the fiber was reduced due to hornification and this in turn caused a decrease in adsorption of cationic PAM. On the other hand, the carboxyl content of the recycled fibers increased because of the oxidation of fibers occurred during drying, and this caused an increase in adsorption of cationic PAM. Because of these two opposing factors the adsorption of the cationic PAM on the recycled fibers decreased and then increased slightly at third recycling step. Increase of PAM adsorption, however, did not provide did not provide and strength improvement for the recycled pulp fibers indicating greater influence of the honification on interfiber bonding.

  • PDF

Chemical Treatment of Short Fiber Fraction of OCC for Retention and Drainage

  • Youn, Hye-Jung;Chin, Seong-Min;Choi, Ik-Sun;Cho, Hui;Seo, Yung-Bum;Sohn, Chang-Man
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.99-103
    • /
    • 2006
  • Use of recycled fibers in papermaking has been increased for economical and environmental reasons. Recycled panels are major liber resources for brown grades and newsprints. Since the recycled fibers have disadvantageous properties as raw materials for papermaking it is of great importance to optimize the use of these recycled fibers. OCC (Old Corrugated Containers) is the major fiber source for linerboards and corrugating mediums that require diverse specification in strength properties. Many studies have been focused to overcome the problems of strength reduction of brown grades when recycled fibers are used as raw materials. The problem of strength loss for papers made from recycled fibers is closely associated with the increased amount of fines in recycled fibers and hornification of fibers. Fines contained in the recycled fiber resources cause problems not only in paper properties but also in process runnability. This shows that the optimal management and proper use of fines in recycling papermaking system are critical to get most benefits of using recycled fibers. In this study some approaches for optimal use of fiber fines in recycled paper mill have been investigated. Stock samples, prepared in the laboratory and obtained from a recycling plant were used. Fractionation of these samples was made using Sweco screen. And the effect of the addition of polyelectrolytes including cationic PAM and PEI on drainage and retention was evaluated. Different methods of polymer addition were compared to find the most effective ways of treating recycled fiber stocks with polyelectrolytes. Addition of polyelectrolytes to the short fiber fraction was most effective in retention and drainage. The influence of the charge and molecular weight of these two polymers has been examined and discussed.

  • PDF

Circulating Fluidized Bed Combustion of Korean Anthracite and Fabricated Anthracite Fines (국내 무연탄과 미분을 성형한 무연탄의 순환유동층 연소)

  • Shun, Do-Won;Bae, Dal-Hee;Oh, Chang-Sup;Kim, Heon-Chang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.553-558
    • /
    • 2010
  • To solve the problems of the low combustion activity of Korean anthracite and the abundant loss of unburned carbon in fly ash, pellet coal was fabricated from coal fines and fly ash, and the mixed combustion of coarse coal with the pellet coal was examined in the circulating fluidized bed combustor of a 0.1 MW scale test unit. In the combustion of the raw coal only, the significant amount of coal fines was entrained, resulting in overheat at the top of the combustor. With the coarse coal that most fines were eliminated, however, the combustion temperature was maintained stable. The mixed combustion of coarse and raw coals was also feasible even though it often went unstable. The mixed combustion of the coarse coal with the pellet coal was as stable as the coarse coal combustion, showing a promise that the combustion of the Korean anthracite in commercial circulating fluidized bed boilers could be further enhanced.

Influence of chemical and mechanical treatments of screened short fibers from OCC on paper forming and strength properties (골판지고지섬유의 단섬유분의 물리화학적처리에 관한 연구 - 골판지 고지의 물리화학적 처리에 의한 강도향상 제 4보 -)

  • Lee, Jong-Hoon;Seo, Yung B.;Choi, Chan-Ho;Jeon, Yang;Lee, Hak-Lae;Shin, Jong-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.04a
    • /
    • pp.71-71
    • /
    • 2000
  • Recycled fibers usually give slow drainage in the paper forming zone on papermachine, which limit the application of more refining to the fibers for improving paper strength and formation. To use recycled fibers, especially, OCC, more effectively, developing very efficient handling technique of short fibers and fines is inevitable. We tried to make hard flocs of fractionated short fibers and fines, which were the main cause of slow drainage, by adding excessive amount of retention aid on them. This technique was proved to increase drainage with no difference in strength properties, compared to the conventional technique of adding the same amount of polymers to the whole furnish in the lab test. The bonding capability of short fibers and fines in Korean OCC were very poor to be considered as ´fillers´in paper products. Various chemical treatment on the short fibers and fines of the Korean OCC did not improve their bonding and optical properties. One of the reasons of no improvement in their properties was thought to be their high amount of ashes (over 30% in the fractionated samples).

  • PDF

Numerical Study on Fine Migration in Geo-materials (지반내 세립토 유동에 대한 수치해석적 연구)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.33-41
    • /
    • 2018
  • Soil internal erosion is a phenomenon in which fines attached to the solid skeleton are detached by fluid flow, and this continuous fine migration weakens the hydro-mechanical characteristics of the ground structure. This paper proposed governing equations for fine migration in pore spaces and its related scheme for the numerical analysis. Phase diagram for fine particles includes three different states: detached fines in the liquid phase ($c_e$), attached fines in the solid phase (${\sigma}_a$), and pore-clogged fines in the solid phase (${\sigma}_s$). Numerical formulations for finite element method are developed based on the hydraulic governing equations of pore fluid and fine migration. This study proposed a method of estimating model parameters for fine detachment, attachment, and clogging from 1D erosion experiments. And it proposed an analytical formula for hydraulic permeability function considering fine clogging. Numerical analysis of the previous erosion test developed the numerical scheme and verified the adequacy of fine migration models.

Undrained Shear Behavior of Sandy Soil Mixtures (사질혼합토의 비배수 전단거동 특성)

  • Kim, Ukgie;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.13-24
    • /
    • 2011
  • In the part of geotechnical engineering, soils are classified as either the coarse grained soil or the fine-grained soil following the fine content($F_c$=50%) according to the granularity, and appropriate design codes are used respectively to represent their mechanical behaviour. However, sand-clay mixtures, which are typically referred to as intermediate soils, cannot be easily categorized as either sand or clay. In this study, several monotonic undrained shear tests were carried out on Silica sand fine mixtures with various proportions, and a wide range of soil structures, ranging from one with sand dominating the soil structure to one with fines controlling the behaviour, were prepared using compaction method or pre-consoldation methods in prescribed energy. The shear strength of mixtures below the threshold fines content is observed that as the fines content increases, maximum deviator stress ratio decrease for dense samples while an increase is noted for loose samples. Then, by using the concept of fines content and granular void ratio, the monotonic shear strength of the mixtures was estimated. It was found that the shear behavior of mixtures is greatly dependent on the skeleton structure of sand particles.

Effect of Fines on the Stability of Unsaturated Soil Slopes (불포화 사면안정에 미치는 세립분의 영향분석)

  • Lee, Kyu-Hyun;Jeong, Sang-Seom;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.101-109
    • /
    • 2007
  • In South Korea, many weathered soil slopes are composed of soil mixtures with certain amount of clay fractions in natural soil deposits. Accordingly, it is very important to analyze that effect of the fines on the stability of unsaturated soil slopes. In this study, five different soil types classified by mixture portion of fines were used and experiment on the soil-water characteristic curve tests (SWCC) using GCTS (Geotechnical Consulting and Testing Systems) pressure plate were performed in order to analyze the stability of unsaturated soil slopes. Based on the infiltration analysis which contains SWCC test result by the SEEP/W, it is shown that the increasing rate of the wetting band depth was decreased as the fines content and the relative density were increased. According to the stability analysis result of the unsaturated soil slopes through the SLOPE/W, it is found that the transition from the wetting band depth to the variation of strength parameters which affect the stability of unsaturated soil slopes appears to occur around $10\sim15%$ of clay contents in the mixtures.