• Title/Summary/Keyword: Fine powder

Search Result 1,184, Processing Time 0.03 seconds

A Study of the Strength and Durability Properties on Recycled Aggregate Concrete and Blain of Blast Furnace Slag (고로슬래그의 분말도 및 순환골재 치환율에 따른 콘크리트의 강도 및 내구적 특성에 관한 연구)

  • Lim, Myung-Kwan;Park, Moo-Young;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.101-108
    • /
    • 2007
  • Furnace slag powder used currently in Korea needs to add special functions in response to the increase of large-scale projects. In addition, it is advantageous in that it has a lower hydration heat emission rate than ordinary Portland cement and improves properties such as the inhibition of alkali aggregate reaction, watertightness, salt proofness, seawater resistance and chemical resistance. However, furnace slag powder is not self -hardening, and requires activators such as alkali for hydration. Accordingly, if recycled fine aggregate, from which calcium hydroxide is generated, and furnace slag, which requires alkali stimulation, are used together they play mutually complementary roles, so we expect to use the mixture as a resource-recycling construction material. Thus the present study purposed to examine the properties and characteristics of furnace slag powder and recycled aggregate, to manufacture recycled fine aggregate concrete using furnace slag and analyze its performance based on the results of an experiment, to provide materials on concrete using furnace slag as a cement additive and recycled fine aggregate as a substitute of aggregate, and ultimately to provide basic materials on the manufacturing of resource-recycled construction materials using binder and fine aggregate as recycled resources.

Research on Synthesis and Sintering Behavior of Nano-sized (Pb, La)TiO3 Powders Using Mechano Chemical Process (기계화학공정에 의한 (Pb, La)TiO3 나노 분말의 합성 및 소결 특성 연구)

  • Lee, Young-In;Goo, Yong-Sung;Lee, Jong-Sik;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • In this study, we successfully synthesized a nano-sized lanthanum-modified lead-titanate (PLT) powder with a perovskite structure using a high-energy mechanochemical process (MCP). In addition, the sintering behavior of synthesized PLT nanopowder was investigated and the sintering temperature that can make the full dense PLT specimen decreased to below $1050^{\circ}C$ by using $Bi_2O_3$ powder as sintering agent. The pure PLT phase of perovskite structure was formed after MCP was conducted for 4 h and the average size of the particles was approximately 20 nm. After sintered at 1050 and $1150^{\circ}C$, the relative density of PLT was about 93.84 and 95.78%, respectively. The density of PLT increased with adding $Bi_2O_3$ and the specimen with the relative densitiy over 96% were fabricated below $1050^{\circ}C$ when 2 wt% of $Bi_2O_3$ was added.

Fabrication of Ultra Fine Grained Molybdenum and Mechanical Properties (초미세 결정립을 가지는 몰리브덴의 제조 및 기계적 특성)

  • Kim, Se-Hoon;Seo, Young-Ik;Kim, Dae-Gun;Suk, Myung-Jin;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.235-241
    • /
    • 2010
  • Mo nanopowder was synthesized by ball-milling and subsequent hydrogen-reduction of $MoO_3$ powder. To fabricate ultra fine grained molybdenum, two-step sintering and spark plasma sintering process were employed. The grain size of specimen by two-step sintering and spark plasma sintering was around $0.6\;{\mu}m$ and $0.4\;{\mu}m$, respectively. Mechanical properties of ultra fine grained Mo with relative density of above 90% were significantly improved at room and high temperatures comparing to commercial bulk Mo of 99% relative density. This result was mainly explained by the grain size refinement due to diffusion-controlled sintering.

Preparation of Ultra Fine Alumina Powder Via Ammonium Aluminium Carbonate Hydroxide (AACH 를 이용한 고순도 알루미나 분말 제조)

  • Tun, Zhu;Shin, Kun-Chul
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.65-71
    • /
    • 2004
  • The ultra fine gamma-alumina powder was prepared via ammonium aluminium carbonate hydroxide (AACH). The XRD, SEM, BET, thermal analysis were used to characterize the samples. The effects of various reaction parameters as concentration, of solution, anion on specific area, PH, aging time and thermal decomposition condition on the produced AACH and alumina were discussed.

  • PDF

Analysis on Calcination of Cementitious Powder of Waste Concrete for Raw Cement

  • Park, Dong-Cheon;Kwon, Eun-Hee;Ahn, Jae-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.54-60
    • /
    • 2014
  • The purpose of this study is to examine whether cementitious powder separated from waste concrete can be used as an alternative raw material to limestone and reduce the usage of natural resource (limestone) and $CO_2$ emission based on recycling cementitious powder from waste concrete. Experiments actually analyzed the chemical composition of cementitious powder and performed hyperthermia analysis, measurement of free CaO and XRD analysis to measure the degree of recovery of hydration in the model of cementitious powder manufactured based on chemical composition. These were performed in each cementitious powder model at different calcination temperatures such as $900^{\circ}C$, $1200^{\circ}C$, $1300^{\circ}C$, $1400^{\circ}C$ and $1450^{\circ}C$. Through the experiments, it was found that the recovery of hydration was at a level which can be used as the alternative raw material for limestone, but the replacement ratio was directly affected by the degree of mixing of fine aggregate in less than $150{\mu}m$, which cannot be separated from cementitious powder. It was shown that there was no difference in the production of compounds involved in hydration at calcination temperatures of $1200^{\circ}C$ or higher. Therefore, to pursue the replacement of limestone and reduction of greenhouse gas by recycling cementitious powder, the development of technology to efficiently separate aggregate fine powder is required.

Compressive strength properties of concrete using Waste Concrete Powder as a cement substitute (폐콘크리트 미분말을 시멘트 대체제로 활용한 콘크리트의 압축강도 특성)

  • Kim, Young-Kyu;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.128-129
    • /
    • 2015
  • Recently, a number of problems due to the CO2 emissions are occurred. Therefore, it is a movement to restrict this activity. The research is being carried out steadily for recycling waste concrete from the cement paste based fine powder, which accounts for over 60% of construction waste as a recycled cement. In this study, the conclusion was obtained as a result of the research conducted, and then, replacing the main material of cement concrete to solve the above problem by reducing the amount of cement used Waste Concrete Powder. The more concrete results page replacement ratio of fine powder increases, the flow value of the concrete is lowered, the strength was remarkably reduced when the page Concrete Powder.

  • PDF

Studies on the Synthesis of High Purity and Fine Mullite Powder (I) (고순도 초미립자 물라이트 분말 합성에 대한 연구 (I))

  • 김경용;김윤호;김병호;이동주
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.682-690
    • /
    • 1989
  • Fine mullite powder was prepared by colloidal sol-gel route. Boehmite as a starting material of Al2O3 and silica sol or fumed silica as a starting material of SiO2 were used. $\alpha$-Al2O3, TiO2 and ZrO2 were used as seeding materials. The combination of boehmite and silica was found to be the stoichiometric mullite powder. Techniques for drying used were spray drying, freeze drying, reduced pressure evaporation and drying in a oven. The gelled powder was heated at 130$0^{\circ}C$ for 100min and was attrition-milled for 1~3hrs. The mullite powder obtained was composed of submicrometer, uniform and spherical particles with a narrow size distribution. The mullite powder was characterized by BET, SEM, XRD and IR spectroscopy.

  • PDF

Properties of Recycled Cement by Content of Fine Aggregate from Waste Concrete Powder (폐콘크리트 미분말의 골재함유량에 따른 재생시멘트의 물성)

  • Bae, Jong-Kun;Kwon, Eun-Hee;Ahn, Jae-Cheol;Park, Dong-Cheon;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.101-102
    • /
    • 2012
  • A policy for recycling waste concrete has been extensively studied, but it is still lacking to recycle and reuse as a cementitious powder, and the property has big different depending on the aggregate rates. In this study, the amount of cement powder according to the internal properties of the aggregate were mixed. From as a result, Concrete Powder to play inside the aggregate composition of the cement composition CaO rigs that causes loss of power and strength reduction due to rising real water cement ratio will affect large.

  • PDF

FE Analysis of Alumina Green Body Density for Pressure Compaction Process (압축성형공정에 대한 알루미나 성형체 밀도분포의 FE 분석)

  • Im, Jong-In;Yook, Young-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.859-864
    • /
    • 2006
  • For the pressure compaction process of the ceramic powder, the green density is very different with both the ceramic body shape and the processing conditions. The density difference cause non-uniform shrinkages and deformations, and make cracks in the sintered ceramics. In this paper, Material properties of the alumina powder mixed with binder and the friction coefficient between the powder and the tool set were determined through the simple compaction experiments: Also the powder flow characteristics were simulated and the green density was analyzed during the powder compaction process with Finite Element Method (FEM). The results show that the density distributions of the green body were improved at the optimized processing condition and both the possibility of the farming crack generation and rho deformation of the sintered Alumina body were reduced.