• Title/Summary/Keyword: Fine powder

Search Result 1,185, Processing Time 0.026 seconds

Milling and Particulate Characteristics of Al Alloy-Al2O3 Powder Mixtures for Reaction-Bonded Al2O3(RBAO) Process

  • Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.574-579
    • /
    • 2013
  • The milling and particulate characteristics of Al alloy-$Al_2O_3$ powder mixtures for a reaction-bonded $Al_2O_3$ (RBAO) process were studied. A commercially available prealloyed Al powder with Zn, Mg, Cu and Cr alloying elements (7475 series) was mixed with a calcined sinter-active $Al_2O_3$ powder and then milled in centrifugal milling equipment for ~48 hrs. The Al alloy-$Al_2O_3$ powder mixtures after milling were characterized and evaluated in various ways to reveal their particulate characteristics during milling. The milling efficiency of the Al alloy increased with a longer milling time. Comminution of the Al alloy particles started with its elongation, showing a high aspect ratio. With a longer milling time, the elongated Al alloy particle changed in terms of its shape and size, becoming equiaxially fine particles. Regardless of the milling efficiency of the Al alloy particles, all of the Al alloy particles repeatedly experienced strong plastic deformation during milling, giving rise to higher density of surface defects, such as microcracks, and leading to higher residual microstress within the Al alloy particles. The chemical reactions, oxidation behavior and hydration behavior of the Al alloy particles and the hydrolysis characteristics of their reaction with the environment were also observed during the milling process and during the subsequent powder handling steps.

Phase Transformation and Microstructure of FeSi2 Thermoelectric Compounds Manufactured by Powder Metallurgy (분말야금법으로 제조된 FeSi2 열전특성 화합물의 열처리 시간에 따른 미세조직과 상변화)

  • Park, Kyoung-Tae;Shin, Jin-Gyo;Hong, Soon-Jik;Chun, Byong-Sun
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.482-488
    • /
    • 2010
  • In this study, $FeSi_2$ as high temperature performance capable thermoelectric materials was manufactured by powder metallurgy.The as-casted Fe-Si alloy was annealed for homogenization below $1200^{\circ}C$ for 3 h. Due to its high brittleness, the cast alloy transformed to fine powders by ball-milling, followed by subsequent compaction (hydraulic pressure; 2 GPa) and sintering ($1200^{\circ}C$, 12 h). In order to precipitate ${\beta}-FeSi_2$, heat treatment was performed at $850^{\circ}C$ with varying dwell time (7, 15 and 55 h). As a result of this experiment thermoelectric phase ${\beta}-FeSi_2$ was quickly transformed by powder metallurgical process. There was not much change in powder factor between 7h and 55h specimens.

Effect of Ball-mill Treatment on Powder Characteristics, Compaction and Sintering Behaviors of ell-AUC and ex-ADU $UO_2$ Powder

  • Na, Sang-Ho;Kim, Si-Hyung;Lee, Young-Woo;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.60-67
    • /
    • 2002
  • The effects of ball-milling time(0 ~4 hrs) have been investigated on the change of powder characteristics, compaction behavior (compaction pressure range : 200 ~400MPa) and sinterability (1700'c in Ha atmosphere) of two different UO$_2$ powders (ex-ADU and ex-AUC) prepared by the wet process. It is observed that, while the ex-ADU UO$_2$ was little affected, the ex-AUC UO$_2$ was largely affected by the ball-milling treatment. This may be attributed to the characteristics of particle size formed during the preparation step, i.e.., the former has a small average size of about 1.0${\mu}{\textrm}{m}$, while the latter has a relatively large average size of about 301n. It appeared that the effective size reduction by ball-milling treatment is limited to the particle size larger than l${\mu}{\textrm}{m}$, and to the extent of maximum decrease in size of about 0.5tn. In the case of ex-AUC UO$_2$, it is observed that the particle size decreased with ball-milling time and green density and sintered density of the pellets prepared from ball-milled powder increased compared with those of pellets prepared from the as-received powder under the same conditions. This may be attributed mainly to the fine particles formed during the ball-milling treatment.

Effect of polymer addition on air void content of fine grained concretes used in TRCC

  • Daskiran, Esma Gizem;Daskiran, Mehmet Mustafa;Gencoglu, Mustafa
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Textile Reinforced Cementitious Composite (TRCC) became the most common construction material lately and have excellent properties. TRCC can be employed in the manufacture of thin-walled facade elements, load-bearing integrated formwork, tunnel linings or in the strengthening of existing structures. These composite materials are a combination of matrix and textile materials. There isn't much research done about the usage of polymer modified matrices in textile reinforced cementitious composites. In this study, matrix materials named as fine grained concretes ($d_{max}{\leq}1.0mm$) were investigated. Air entraining effect of polymer modifiers were analyzed and air void content of fine grained concretes were identified with different methods. Aim of this research is to study the effect of polymer modification on the air content of fine grained concretes and the role of defoamer in controlling it. Polymer modifiers caused excessive air entrainment in all mixtures and defoamer material successfully lowered down the air content in all mixtures. Latex polymer modified mixtures had higher air content than redispersible powder modified ones. Air void analysis test was performed on selected mixtures. Air void parameters were compared with the values taken from air content meter. Close results were obtained with tests and air void analysis test found to be useful and applicable to fine grained concretes. Air void content in polymer modified matrix material used in TRCC found significant because of affecting mechanical and permeability parameters directly.

Outline and Performance Evaluation of High Quality Recycled Fine Aggregate Manufacturing System Using Drying Gravity Separation Method (건식비중분리법에 의한 고품질순환잔골재생산시스템의 개요 및 성능평가)

  • Kim Moo-Han;Kim Gyu-Yong;Choi Kyongl-Yeul;Lee Do-Heun;Song Ha-Young;Roh Kyung-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.111-114
    • /
    • 2006
  • Recently, it is increased on the concern for the reuse of waste concrete because of the shortage of natural aggregate and the increase of waste concrete. And recycled coarse aggregate is used variously, but the existing wet method producted recycled fine aggregate has problem like the high price facilities, the long time progress of the work and the poor of recycled fine aggregate. The aim of this study is to investigate outline and performance evaluation of the drying specific gravity separation method to product high duality recycled fine aggregate. Finally, this study is shown investigate process flowing of drying separation type with gravity manufacture, producte system and function of detail devices. The performance of the method of drying specific gravity separation is certificated as the qualities of recycled fine aggregate satisfied the KS

  • PDF

Fabrication of Photoimageable Silver Paste for Low-Temperature Cofiring Using Acrylic Binder Polymers and Photosensitive Materials

  • Park, Seong-Dae;Yoo, Myong-Jae;Kang, Nam-Kee;Park, Jong-Chul;Lim, Jin-Kyu;Kim, Dong-Kook
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.391-398
    • /
    • 2004
  • Thick-film photolithography is a new technology that combines lithography processes, such as exposure and development, with the conventional thick-film process applied to screen-printing. In this study, we developed a low-temperature cofireable silver paste applicable for thick-film processing to form fine lines using photolitho-graphic technologies. The optimum paste composition for forming fine lines was investigated. The effect of processing parameters, such as the exposing dose, had on the fine-line resolution was also investigated. As the result, we found that the type of polymer and monomer, the silver powder loading, and the amount of photoinitiator were the main factors affecting the resolution of the fine lines. The developed photoimageable silver paste was printed on a low-temperature cofireable green sheet, dried, exposed, developed in an aqueous process, laminated, and then fired. Our results demonstrate that thick-film fine lines having widths < 20 $\mu\textrm{m}$ can be obtained after cofiring.

High-temperature Oxidation of Turbocharger Steels Manufactured by Powder Metallurgy and Casting (분말야금법과 주조법으로 제조한 자동차 터보차져강의 고온산화)

  • Park, Soon Yong;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.132-139
    • /
    • 2015
  • Turbocharger steels were manufactured by the powder metallurgical and casting method. They consisted primarily of a large amount of ${\gamma}$-Fe, a small amount of ${\alpha}$-Fe, and fine $Nb_6C_5$ precipitates. The casting method was better than the powder metallurgical method, because a sound matrix with little oxides were obtained. When turbocharger steels were oxidized at $900^{\circ}C$ for 50 h, $Mn_2VO_4$ and (Mn,Si)-oxides were formed along grain boundaries, while $Mn_2O_3$ and $CrMn_2O_4$ were formed intragranularly. Fe, Nb, and Ni were depleted in the oxide scale.

Investigation on the property and preparation of ferroelectric Pb(Zr,Ti)$O_3$ by Sol-Gel method (Sol-Gel법에 의한 강유전체 Pb(Zr, Ti)$O_3$의 제조 및 특성에 관한 연구)

  • 임정한;김영식;장복기
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.496-503
    • /
    • 1994
  • In recent years Sol-Gel processing provides an interesting alternative method for the fabrication of ferroelectric thin layers and powder. PZT powder was prepared from an alkoxide-based solution by a Sol-Gel method. Gelation of synthesized complex solutions, microstructure, thermal analysis and crystallization behaviors of the calcined powder were studied in accordance with a water content and a catalyst. Especially gelation and crystallization behavior were analysed with the change of pH. The gelation time decreased as the pH of the mixed solution increased. For PZT powder with 650.deg. C heat treatment, 100% perovskite phase was formed by using either acidic or basic catalyst. By using either acidic or basic catalyst, we were able to get very fine powders of uniform shape with an average particle size of 0.8-1.mu.m.

  • PDF

The Preparation of PZT Fine Powder Using Ammonia Gas as a Precipitator (Ammonia gas를 침전제로 이용한 PZT 미분말의 합성)

  • 현성호;김정환;이한철;허윤행
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.62-69
    • /
    • 1999
  • In this study, the synthesis of PZT powder by bubble column reactor was investigated at various reaction conditions. As a result, the volume % of $NH_3$ gas used as a precipitator had no effect on the synthesis, but the more research is needed to control particle size.As a carrier gas, Ar, $O_2$ and air only increased the stirring effect but had no effect chemically on the synthesis. The calcination temperature of prepared PZT powder was about $500-600^{\circ}C$ and the meanparticle size of synthesized PZT powder was about $0.17{\mu}m$. The grain size of sintered body is about $0.5~3{\mu}m$ and this is similar with the value of commercial products.

  • PDF

A Study on the Preparation of Fine Powder and Synthesis of (1-x) ZrO2-xY2O3 Systems ((1-x) ZrO2-xY2O3계 미분말의 합성 및 소결체의 제조에 관한 연구)

  • 안영필;김복희;성상현
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.235-242
    • /
    • 1987
  • This study was about to make zirconia ceramics with yttria, using spraying precipitation method for the purpose of powder control. The powder properties and the characterization of sintered body, were studied. As the results, 1. The synthesized powder had homogeneity of spherical shape, and average particle size was 2-3 um. 2. Crystallization temperature increased with Y2O3 content. 3. Apparent density of sintered body (fired above 1500$^{\circ}C$) was higher than 98% of theoretical value in 3 mol% Y2O3 content. 4. High KIC values(19kg/㎣/2) in 3 mol % Y2O3 content resulted from sintering density increasement.

  • PDF