• Title/Summary/Keyword: Fine particulate

Search Result 442, Processing Time 0.023 seconds

Size Distribution Characteristics of Water-soluble Ionic Components in Airborne Particulate Matter in Busan (부산 도심지역 대기중 입자상물질의 크기분포에 따른 수용성 이온성분의 특성)

  • Park, Gee-hyeong;Lee, Byeong-kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.287-301
    • /
    • 2015
  • This study was conducted to investigate size distribution characteristics of water-soluble ionic components in the airborne particulate matter (PM) collected from an urban area in Busan using a MOUDI cascade impactor from March to October 2010. The inorganic constituents in the fine particles (${\leq}1.8{\mu}m$) predominantly consisted of sulfate, nitrate, ammonium, and potassium. Sulfate and ammonium concentrations showed a high correlation and similar equivalent concentrations in the fine modes including $0.18{\sim}0.32{\mu}m$, $0.32{\sim}0.56{\mu}m$, and $0.56{\sim}1.0{\mu}m$. This indicates that the main chemical component in the fine particles would be forms of ammonium sulfate such as $(NH_4)_3H(SO_4)_2$, $(NH_4)_2SO_4$, and $(NH_4)HSO_4$. Back trajectory analysis showed that relatively higher concentrations of ammonium, nitrate, and sulfate in the fine mode, compared to the coarse mode, are caused both by domestic sources and long-range transports originated from China continent. High concentration episodes of PM both in the fine mode and the coarse mode were attributed both by anthropogenic sources, such as ship emissions and traffic emissions, and by natural sources such as seawater (sea salt), respectively.

Chemical characteristics and sources of fine ambient particulate matter from the third and fourth industrial complex area of Daejeon city, Korea (대전 3, 4 공단지역의 미세분진에 대한 화학적 특성과 오염원 연구)

  • Lim, Jong-Myoung;Lee, Jin-Hong;Chung, Yong-Sam
    • Analytical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • This study centered on the quantitative analysis of about 27 trace elements including toxic ones using instrumental neutron activation analysis of fine ambient particulate matter in the third and fourth industrial complex area of Daejeon city, Korea. For analytical quality control, the certified reference material (NIST, the National Institute of Standards and Technology, U.S.A., SRM 2783, air particulate on filter media) was used. The errors relative to SRM values of Sb, Mn, V, Mg, Na, K, Ti, Co, Zn, and Sm fell below 5%, while those of Cr, Fe, Ba, Th, Ce, Al, and Cu were less than 10%. From the results of the quantitative analysis, the concentration of toxic metals such as As, Mn, Se, V, and Zn were $3.26{\pm}2.72$, $9.86{\pm}4.71$, $2.18{\pm}1.25$, $4.91{\pm}2.41$, $158{\pm}78ng/m^3$, respectively. And the results of factor analysis indicated that there are no more than six factors of sources of fine ambient particulate with statistical significance in the study area.

Studies on Benzo(a) pyrene Concentrations in Atmospheric Particulate Matters (大氣浮游粒子狀物質中 Benzo(a) pyrene 濃度에 關한 硏究)

  • 손동헌;허문영;남궁용
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.2
    • /
    • pp.11-17
    • /
    • 1987
  • Atmospheric particulate matter (A.P.M.) was collected on quartz fiber filters from March 1985 to February 1986 at Chung-Ang University according to particle size using Andersen high-volume air smapler, and benzo (a) pyrene concentration in these particulates were analyzed by high performance liquid chromatography. The annual arithmetic mean concentration of A.P.M. was 115.50$\mug/m^3$. The annual arithmetic mean concentrations of coarse particles and fine particles in A.P.M. were 52.54$\mum/m^3$ and 62.96$\mum/m^3$ respectively. THe annual arithmetic mean concentration of benzo(a)pyrene in A.P.M. was 1.44$ng/m^3$. THe annual arithmetic mean concentrations of benzo(a)pyrene in coarse particles and fine particles were 0.05 $ng/m^3$ and 1.39 $ng/m^3$ respectively. Thus, the concentration of benzo(a)pyrene showed maldistribution of 96.53% in fine particle. A.P.M. showed wide fluctuation according to the season. The concentration of A.P.M. was lowest in summer and high in spring and winter. Coarse and fine particle concentrations in A.P.M. were highest in spring and winter, respectively. The concentrations of benzo(a)pyrene was highest in winter and lowest in summer. The concentrations of benzo(a)pyrene in fine and coarse particles were highest in winter and spring, respectively.

  • PDF

Impact of Dust Transported from China on Air Quality in Korea -Characteristics of PM2.5 Concentrations and Metallic Elements in Asan and Seoul, Korea

  • Yang, Won-Ho;Son, Bu-Soon;Breysse, Patrick;Chung, Tae-Woong
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.6
    • /
    • pp.479-487
    • /
    • 2007
  • [ $PM_{2.5}$ ], particulate matter less than 2.5 um in a diameter, can penetrate deeply into the lungs. Exposure to $PM_{2.5}$ has been associated with increased hospital visits for respiratory aliments as well as increase mortality. $PM_{2.5}$ is a byproduct of combustion processes and as such has a complex composition including a variety of metallic elements, inorganic and organic compounds as well as biogenic materials (microorganisms, proteins, etc). In this study, the average concentrations of fine particulates $PM_{2.5}$ have been measured simultaneously in Asan and Seoul, Korea, by using particulate matter portable sampler from September 2001 to August 2002. Sample collection filters were analyzed by ICP-OES to determine the concentrations of metallic elements (As, Ni, Fe, Cr, Cd, Cu, Pb, Zn, Si). Annual mean $PM_{2.5}$ concentrations in Asan and Seoul were 37.70 and $45.83\;{\mu}g/m^3$, respectively. The highest concentrations of $PM_{2.5}$ were found in spring season in both cities and the concentrations of measured metallic elements except As in Asan were higher than those in Seoul, suggesting that yellow dust in spring could affect $PM_{2.5}$ concentrations in Asan rather than Seoul. The correlation coefficients of Pb and Zn were 0.343 for Asan and 0.813 for Seoul during non-yellow dust condition, suggesting that Pb and Zn were influenced with the same sources. The correlation coefficients between Si and Fe in the fine particulate mode were 0.999 (Asan) and 0.998 (Seoul) during yellow dust condition. It was suggested that these two elements were impacted by soil-related transport from China during the yellow dust storm condition.

Study on the Change of Physical Characteristics by Polarity and Additives of SiC DPF Binder for Diesel Engine Application (디젤엔진에 적용하기 위한 SiC DPF용 접합제의 극성 및 첨가물에 따른 물리적 특성 변화에 관한 연구)

  • Kim, Jinwon;Ryu, Younghyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.974-981
    • /
    • 2019
  • Fine dust has become a significant social problem. Diesel engines are used as the main propulsion power source in ships. This study introduces a diesel particulate filter (DPF) that is used as an exhaust after-treatment system for diesel engines to reduce particulate matter known as diesel fine dust. Two materials are used for the DPF: Cordierite and silicon carbide (SiC). In this study, to improve the physical properties of the binder used in the SiC DPF, cordialite was used instead of the SiC-based materials used as the conventional binder to evaluate the thermal durability against high-temperature deformation through the change of the coefficient of thermal expansion. In addition, the physical properties of the silica sol, as a main component of the base coating solution for determining the bond between the binder and the segment, were confirmed. Based on this, the change effect of the binder physical properties was confirmed through experiments by either adding a silane coupling agent or SiC to increase the reactivity of the silica sol.

A Study on the Fine Dust Removal Equipment of Pressurized Water type for the Removal of Exhaust Gas Fine Dust and Volatile Organic Compounds from the Non-industrial combustion plant (비산업 연소 사업장 배출 가스상 미세먼지와 휘발성 유기 화합물 제거를 위한 가압수식 미세먼지 제거 장치 연구)

  • Youn, Jae-Seo;Kim, Sang-Min;Lee, Ye-Ji;Noh, Seong-Yeo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.506-512
    • /
    • 2018
  • The fine dust generated in the home and restaurant business occupies a low ratio of about 4% of the total fine dust emissions. However, at the foodservice business, the rate of change of the pollutant concentration is very high, so that the temporary fine dust concentration can be measured up to 60 times. The pollutants generated from non-industrial combustion plants consist of particulate fine dust and gaseous organic compounds. To remove these pollutants, cleaning dust collection system, which is an effective system for simultaneous removal of gaseous and particulate matter, is applied. This is a method of increasing the probability of diffusion capture of the Brownian motion by pressurized liquid injection method using the atomizing nozzle. The dust removal efficiency of the fine dust collecting system was analyzed by nozzle spraying air pressure condition and angle using the manufactured fine dust removing system. As a result, it was confirmed that the efficiency of removal of fine dust and gaseous organic compounds was more than 90%. The developed system is expected to be highly usable in the future because it can remove particulate dust from the existing plant hood system without any installation cost.

Basic Properties of Permeable Block mixed with Diatomite (규조토를 혼입한 투수블록의 기초특성)

  • Kim, Min-Ho;Choi, Byung-Cheol;Yoo, Jae-Gyun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.123-124
    • /
    • 2021
  • Recently, the danger of fine dust has emerged worldwide. In general, fine dust refers to particulate matter less than 10㎛ and ultrafine dust less than 2.5㎛, and according to the announcement by HEI (Health Impact Research Institute) in 2015, the concentration of ultrafine dust in Korea is the second highest among OECD member countries. It was investigated. In this study, an experiment was conducted to analyze how the diatomaceous earth substitution rate affects the strength characteristics of the permeable block. As the replacement rate of diatomaceous earth increased, the strength decreased. The reason why the strength decreases with the use of diatomaceous earth is that the strength of the hardened body decreases as the structure of the hardened body becomes less dense as the amount of diatomaceous earth increases, and the reason that the strength decreases as the replacement rate of diatomaceous earth increases is the reason for the absorption performance of diatomaceous earth. Therefore, it is judged that a void was generated inside the hardened body while water was absorbed and then evaporated or discharged in the matrix, and accordingly, the strength decreased.

  • PDF