• Title/Summary/Keyword: Fine particle flotation

Search Result 13, Processing Time 0.021 seconds

Investigation on the Enhancement of the Flotation Performance in Fine Molybdenum Particles Based on the Probability of Collision Model (충돌확률 모델에 의한 미립 몰리브덴광의 부유선별 효율 향상 연구)

  • Jisu Yang;Kyoungkeun Yoo;Joobeom Seo;Seongsoo Han
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.38-47
    • /
    • 2024
  • Molybdenite is the primary molybdenum resource and is extracted via flotation due to its unique hydrophobic surface. Meanwhile, the grade and crystal size of mined molybdenite are decreasing. As a result, the size of the molybdenum ore required for liberation is decreasing, and the flotation process's feed size input is also decreasing. Therefore, in order to secure molybdenum, it is necessary to perform research on the flotation for the fine molybdenite. In this study, we developed a method to enhance the flotation efficiency of fine molybdenite particles in the range of 5-30 ㎛. The methodology involved implementing bubble size reduction and particle aggregation. Through simulations of bubble-particle collision probability and flotation experiments, we were able to find the ranges of bubble size and particle aggregate size that make fine particles float more effectively. This range provided the conditions for effective flotation of fine molybdenite particles. Therefore, we will implement the flotation conditions established in this study for fine molybdenum ore to improve the flotation process in molybdenum mineral processing plants in the future.

Adsorption of Flexography Ink on Inorganic Particles Patched with Cationic Polymer (양이온성 고분자로 처리한 무기입자에 대한 플렉소그라피 잉크의 흡착)

  • Jeong, Young Bin;Kim, Jin Woo;Oh, Kyu Duk;Youn, Hye Jung;Lee, Hak Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.8-13
    • /
    • 2012
  • The flexography ink has disadvantage in a deinking process because it tends to form too fine particles in alkali condition to be removed in flotation deinking. The influence of pH conditions on the particle size of phthalocyanine cyan ink used for flexo-printing was investigated to see the effect of pH conditions on flexography ink dispersion. Flexography ink particles prepared by grinding dried ink films were used in this experiment. Greater reduction of the ink particle size was noticed under alkaline pH condition, which was attributed to dissolution of resin component of the ink. Adsorption behavior of flexography ink onto pigment particles was examined using clay and talc as substrate pigments. Pretreatment of inorganic pigments with a cationic poly-DADMAC increased the surface adsorption of flexography ink particles, which improved the removal of the inks by centrifugal sedimentation of inorganic pigments. Most efficient removal of the ink particles was achieved when an optimal addition level of the cationic polymer was used for pretreatment of inorganic pigments, and this optimal addition level corresponds to the surface saturation point of the polyelectrolyte. Adsorption of flexography ink particles onto inorganic pigments improved the ink removal in flotation deinking since the pigment particles has the optimal particle size for flotation deinking.

Neutral Deinking of Photocopied Papers with Nonionic Surfactants (비이온 계면활성제를 이용한 복사고지의 중성탈묵)

  • 정영재;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.2
    • /
    • pp.58-67
    • /
    • 2001
  • MOW (Mixed Office Waste) mainly consisted of photocopied paper is being recycled to produce tissue or fine paper products. Toner particles that are fused and set on paper surface in photocopying process turns into large and plate-shaped particles after repulping which prevents them to be removed effectively in flotation deinking. The immediate purpose of this study is to find the effective deinking technology that increases the recycling potential of photocopied papers for manufacturing tissue and fine paper products. In this study the effects of pulping temperature and the type of hydrophobic groups of nonionic surfactants on the deinking efficiency of photocopied paper has been investigated. Particle size distribution of the toner particles after pulping and flotation, brightness, yield and ash removal were investigated. The size of toner particles after pulping increased as the pulping temperature was increased. When pulping at the low temperature finer toner particles were generated, however, greater amount of toner particles was found to attach to the fiber. When the pulping temperature was greater than Tg of the toner, the amount of coarse hairy particles increased. When nonionic surfactants with a double bond in hydrophobic groups were used, toner removal efficiency, brightness and ash removal were increased. As the addition level of surfactant was increased, yield decreased rather sharply without improving brightness.

  • PDF

A Basic Study on the Recycling of Dredged Sewage Sediment (하수도 준설토 재활용에 관한 기초 연구)

  • Kim, Hong Min;Choi, Yun Jeong;Yoon, Seok-Pyo;Kim, Jun Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.33-37
    • /
    • 2018
  • In order to recycle sewage dredging soil, we analyzed particle size distribution and organic content of dredged sewage sediments. Based on this, it was determined that particles with relatively low organic content of 1.0 mm or more could be recycled as fine aggregate. Although it was inorganic at the size of 5 mm or more, it contained a number of foreign substances other than fine aggregate, which were needed to be removed with a sieve. Since there are volatile suspended solids between 1.0 and 5.0 mm size, they were removed by means of flotation. Fine aggregate was obtained from dredging soil by screening followed with flotation method, and the proportion of fine aggregate obtained in this study was around 38 %.

Examining the Effect of L/W Ratio on the Hydro-dynamic Behavior in DAF System Using CFD & ADV Technique (전산유체역학과 ADV기술을 이용한 장폭비의 DAF조내 수리흐름에 미치는 영향 연구)

  • Park, No-Suk;Kwon, Soon-Bum;Lee, Sun-Ju;Bae, Chul-Ho;Kim, Jeong-Hyun;Ahn, Hyo-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.421-428
    • /
    • 2005
  • Dissolved air flotation (OAF) is a solid-liquid separation system that uses fine bubbles rising from bottom to remove particles in water. In this study, we investigated the effect of L/W (L; Length, W; Width) on the hydro-dynamic behavior in DAF system using CFD (Computational Fluid Dynamics) and ADV (Acoustic Doppler Velocimetry) technique. The factual full-scale DAF system, L/W ratio of 1:1, was selected and various L/W ratio (2:1, 3:1, 4:1 and 5:1) conditions were simulated with CFD. For modelling, 2-phase (gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. Also, for verification of CFD simulation results, we measured the factual velocity at some points in the full-scale DAF system with ADV technique. Both the simulation and the measurement results were in good accordance with each other. As the results of this study, we concluded that L/W ratio and outlet geometry play important role for flow pattern and fine bubble distribution in the flotation zone. In the ratio of 1:1, the dead zone is less than those in other cases. On the other hands, in the ration of 3:1, the fine bubbles were more evenly distributed.

Mineralogical Characteristics and Fundamental Study of Flotation for Molybdenum Ore (몰리브덴광의 광물학적 특성 및 부선 기초연구)

  • Oyunbileg Purev;Hyun Soo Kim;Chul-Hyun Park
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.73-80
    • /
    • 2022
  • This study investigated the mineralogical characteristics and basic flotation properties of domestic molybdenum ores. The source mineral of molybdenum was identified as molybdenite, and the main gangue minerals in the raw ore were silicate minerals. Copper, lead, and zinc were also found in trace amounts. Based on the results of basic flotation properties, molybdenite's zeta potential showed negative charges in all pH ranges. The contact angle of molybdenite increased with pH, reaching a maximum of 74° at pH 9. In optimal conditions, the grade and recovery of the concentrate by unit flotation were MoS2 82.4% and 92.04%, respectively. Further investigation of the impurities in the concentrate revealed a sulfide mineral with surface characteristics similar to molybdenite and silicate minerals combined with molybdenite, which may degrade the quality of the concentrate. To improve the concentrate quality, we intend to control silicate minerals through regrinding and liberation and use column flotation to improve fine particle separation efficiency.

Evaluation on Flotation Efficiency of Bubble-floc Agglomerates and Operation Characteristics of Hydraulic Loading Rate Using Population Balance in DAF Process (DAF공정에서 개체군 수지를 이용한 기포-플록 응집체의 부상효율과 수리학적 부하율의 운전특성 평가)

  • Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.531-540
    • /
    • 2008
  • The main advantage of dissolved air flotation (DAF) in water treatment process is the small dimension compared with conventional gravity sedimentation and it can be basically reduced by the separation zone performed with the short solid-liquid separation time. Fine bubbles make such a short time possible to carry out solid from liquid separation as a collector on the course of water treatment. Therefore, the dimension of separation zone in DAF process is practically determined by the rise velocity of the bubble-floc agglomerates, which is a floc attached with several bubbles. To improve flotation velocity and particle removal efficiency in DAF process, many researchers have tried to attach bubbles as much as possible to flocs. Therefore, the maximum number of attached bubble on a floc and the rise velocity of bubble-floc agglomerates considered as the most important factor to design the separation zone of flotation tank in DAF process was simulated based on the population balance theory. According to the simulation results of this study, the size and volume concentration of bubble influenced on the possible number of attached bubble on a floc. The agglomerates attached with smaller bubble was more sensitive to hydraulic loading rate in the separation zone of DAF process. For the design of a high rate DAF process applied over surface loading 40 m/hr. it is required a precise further study on the variation of bubble property and behavior including in terms of bubble size distribution.

Comparative Study on Removal Characteristics of Disinfection By-products by Air Stripping and Flotation Processes (탈기와 부상 공정에 의한 소독부산물의 제거특성에 관한 비교 연구)

  • Cha, Hwa-Jeong;Won, Chan-Hee;Lee, Kang-Hag;Oh, Won-Kyu;Kwak, Dong-Heui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.513-520
    • /
    • 2016
  • It is well known that volatile compounds including disinfection by-products as well as emissive dissolved gas in water can be removed effectively by air stripping. The micro-bubbles of flotation unit are so tiny as microns while the diameter of fine bubbles applied to air stripping is ranged from hundreds to thousands of micrometer. Therefore, the micro-bubbles in flotation can supply very wide specific surface area to transfer volatile matters through gas-liquid boundary. In addition, long emission time also can be gained to emit the volatile compound owing to the slow rise velocity of micro-bubbles in the flotation tank. There was a significant difference of the THMs species removal efficiency between air stripping and flotation experiments in this study. Moreover, the results of comparative experiments on the removal characteristics of THMs between air stripping and flotation revealed that the mass transfer coefficient, $K_La$ showed obvious differences. To overcome the limit of low removal efficiency of dissolved volatile compounds such as THMs in flotation process, the operation range of bubble volume concentration is required to higher than the operation condition of conventional particle separation.

Agglomeration of Toner Particles with Fatty Alcohol and Their Removal by Screening (고급알코올을 이용한 토너의 응집 및 스크리닝을 통한 제거 효과)

  • 허용성;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.24-32
    • /
    • 2004
  • Toner used in xerographic printing process is hydrophobic powder with low surface energy. The toner ink film fused on paper surface can be efficiently detached from a fiber surface during pulping, but it does not fragment again into fine toner particles. Ink agglomerates that result have too large particle size to be deinked by flotation. The purpose of this study is to enhance toner agglomeration using 1-octadecanol for improving the toner removal by screening. The effect of pH, pulping temperature, and 1-octadecanol on toner agglomeration and removal by screening was investigated using image analysis methods. Results showed that the size of toner agglomerates increased substantially when pulping was carried out at high temperature under acidic condition. When toner agglomerates showed spherical shape, the particle removal efficiency of screening was improved.

Collision Efficiency Estimation in the DAF Contact Zone using Computational Fluid Dynamics (전산유체 기법을 이용한 용존공기부상법에서의 접촉도 조건변화에 따른 충돌효율평가)

  • Kim, Sung-Hoon;Yoo, Je-Seon;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.201-207
    • /
    • 2004
  • Dissolved air flotation (DAF) is a solid-liquid separation process that uses fine rising bubbles to remove particles in water. Most of particle-bubble collision occurs in the DAF contact zone. This initial contact considered by the researchers to play a important role for DAF performance. It is hard to make up conceptual model through simple mass balance for estimating collision efficiency in the contact zone because coupled behavior of the solid-liquid-gas phase in DAF system is 90 complicate. In this study, 2-phase(gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. For the modeling of turbulent 2-phase flow in the reactor, the standard $k-{\varepsilon}$ mode I(liquid phase) and zero-equation(gas phase) were used in CFD code because it is widely accepted and the coefficients for the model are well established. Particle-bubble collision efficiency was calculated using predicted turbulent energy dissipation rate and gas volume fraction. As the result of this study, the authors concluded that bubble size and recycle ratio play important role for flow pattern change in the reactor. Predicted collision efficiency using CFD showed good agreement with measured removal efficiency in the contact zone. Also, simulation results indicated that collision efficiency at 15% recycle ratio is higher than that of 10% and showed increasing tendency of the collision efficiency according to the decrease of the bubble size.