• Title/Summary/Keyword: Fine particle cement

Search Result 95, Processing Time 0.024 seconds

A Fundamental Study on Early Compressive Strength Improvement of the Blast Furnace Slag Cement Mortar Using the Fine Particle Cement and Gypsum (석고 및 미분시멘트에 의한 고로슬래그 미분말 치환 시멘트 모르타르의 초기강도 향상에 관한 기초적 연구)

  • Han, Cheon-Goo;No, Dong-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.90-97
    • /
    • 2009
  • The purpose of the study was to examine basic property at the time of applying cast ('CS' below) and high fineness fine particle cement ('FC' below) as a stimulant to 20% substitution cement mortar of ground granulated blast-furnace slag ('BS' below) to settle a problem that early strength of BS mortar is lowered. The results were as follows. First of all, as a characteristic of fresh mortar, liquidity was reduced as much as BS substitution rate was increased. When substituting CS for BS 20%, it didn't have a large effect regardless of substitution rate. When substituting FC, it was reduced as much as substitution was increased. In the event of compressive strength, it was reduced as much as BS substitution was increased in early age. In age 28, it was somewhat increased by reflection of potential hydraulicity. With regard to improvement of early compressive/bending strength of BS 20% substitution mortar, when substituting CS, in early age, they were a little increased as much as addition rate was increased. When substituting FC, in early and 28 age, they were largely increased as much as substitution rate was increased. To settle a problem that early strength of BS 20% substitution mortar was lowered, CS substitution has a little effect and FC 25% substitution was similar to plain with only OPC. Therefore, when substituting FC 25%, it is expected that its quality will be improved.

  • PDF

Fluidity of Cement Paste and Fluidity and Compressive Strength of Cement Mortar Substituted by Pozzolanic fine Powders and II-Anhydrite (포졸란계 미분말과 ∥ 형 무수석고 치환 시멘트 페이스트 유동성과 시멘트 모르타르의 유동성 및 압축강도)

  • 노재성;이범재;김도수;이병기
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.149-156
    • /
    • 1997
  • In order to improve compressive strength of cement mortar, powder admixture(FAS) was mmufactured by mixing fly ash. Il-anhydite and silica hume, and superplasticizer was used for the control of fluidity reduction with the use of this admixture. Cement was substituted by 10, 20wt% of FAS respectively. At W/S = 0.40, the fluidity of' cement paste substituted by PAS was decreased. NSF and NT-2 were very effective fbr the control of fluidity reduction. As the particle size of U -anhydrite was fine, the fluidity of cement mortar was increased. The fluidity reduction of cement mortar substituted by 10wt% of FAS was controlled. The compressive strength of cement mortar substituted by 10wt% of FAS showed higher. value than that of 20wt%, expecially specimen(C1) substituted by 10wt% of $\gamma$ had the highest compressive strength value.

Fluidity Changes of Cement Paste added Superplasticizer and Inorganic Fine Powders for Cement Admixture (고유동화제와 시멘트 혼화용 무기미분체가 첨가된 시멘트 페이스트의 유동성 변화)

  • 김도수;정흥호;박병배;노재성
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.751-759
    • /
    • 2000
  • Effects of the dosage change, from 0 to 2.0 wt% based on cement weight, of naphthalenic (NSF) and polycarboxylic(NT-2) superplasticizers, on the fluidity of cement paste substituted by 10 wt% II-anhydrite and fly ash respectively as well as II-anhydrite and fly ash itself were investigated. Dispersion properties between particles in suspension were investigated by zeta potential test. Initial fluidity and slump loss in the paste system were observed through mini-slump and apparent viscosity changes with elapsed time. Zeta potential on the particle surface was a tendency to increase according to increasing of NSF dosage. Especially, zeta potential of fly ash has the highest value among all particles equivalent to NSF dosage. In the fluidity of cement paste substituted by inorganic particles, the specimen with substitution of 10 wt% II-anhydrite and fly ash for cement was more effective than cement itself to improve initial fluidity and retain stable fluidity of cement paste. In addition, effect of NT-2 and NSF to improve the fluidity of cement paste, addition of 1.0 wt% NT-2 was more effective than 1.5wt% NSF.

  • PDF

CaO Optimal Classification Conditions for the Use of Waste Concrete Fine Powder as a Substitute for Limestone in Clinker Raw Materials (폐콘크리트 미분말을 클링커 원료의 석회석 대체재로 사용하기 위한 CaO 최적 분급 조건)

  • Ha-Seog Kim;Sang-Chul Shin
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.147-156
    • /
    • 2024
  • This study aims to reduce CO2 generated during the manufacturing process by using limestone (CaCO3), a carbonate mineral used in the production of cement clinker, as a decarbonated raw material that does not contain CO2. Among various industrial by-products, we attempted to use cement paste attached to waste concrete. In general, limestone for cement must have a CaCO3 content of at least 80% (CaO, 44% or more) to ensure the quality of cement clinker. However, the CaO content of waste concrete fine powder is about 20% on average, so in order to use it as a cement clinker raw material, the CaO content must be increased to more than 35%. Therefore, by using the difference in hardness of the mineral composition of waste concrete fine powder to selectively crush CaO type minerals with relatively low hardness, classify and sieve, the CaO content can be increased by more than 35%. Accordingly, in this study, we experimentally and statistically reviewed and analyzed the optimal conditions for efficiently separating CaO and SiO2 and other components by selectively pulverizing minerals containing relatively low CaO through a grinding process. As a result of the optimal grinding conditions experiment, it was found that the optimal conditions were a grinding time of less than 5 minutes, a type of material to be crushed of 30 mm, and an amount of material to be crushed of 1.0 or more. However, it is judged that it is necessary to review pulverized materials of mixed particle sizes rather than pulverized products of single particle size.

Effects of Particle Size of Fly Ash on the High Strength of Hardened Cement Mortar (시멘트 모르터 경화체의 고강도화에 미치는 플라이 애쉬 입자크기의 영향)

  • 김영수;김정환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.131-139
    • /
    • 1994
  • The min aim of thls study was to evaluate the effect of particle slze of the fly ash as a cement additive. Experimental work was carried out with three different sizes of fly ash. 18.58, 8.95 and 4.02{$mu}m$ in average radius. Namely, the effect of particle size variation of fly ash on the physical properties of cement paste was investigated. The jluidity was decreased with increasing the addition of fly ash to cement paste regardless of the particle size variation. The decrement of the fluidity of the pulverized fly ash was higher than that of the spherical fly ash. On the other hand, the pozzolan reactivity increased with lowering particle size. In the case of specimens with 5% up to 10% addition of fly ash having a particle size of 4.02{$mu}m$. the compressive strength was increased as compared with the plain specimens before curing for 28 days and showed higher value above 800kg /$cm^2$ when cured for 60 days.This increased compressive strength was ascribed to both the closer packlng of fine particles and the pozzolan reactivity of fly ash. These results were comfirmed by measuring both the porosity of the specimens and Ca(OH ), contents remained in specimens. This work showed that could be effectively ut~lized as a blending material without any de crease in the strength of early hydration stage if we can control the particle size of fly ashes by sizing or pulverizing.

Production of concrete paving blocks using electroplating waste - Evaluation of concrete properties and solidification/stabilization of waste

  • Sgorlon, Juliana Guerra;Tavares, Celia Regina Granhen;Franco, Janaina de Melo
    • Advances in environmental research
    • /
    • v.3 no.4
    • /
    • pp.337-353
    • /
    • 2014
  • The determination of the effectiveness of the immobilization of blasting dust (waste generated in galvanic activities) in cement matrix, as well of mechanical, physical and microstructural properties of concrete paving blocks produced with partial replacement of cement was the objective of this work. The results showed that blasting dust has high percentage of silica in the composition and very fine particle size, characteristics that qualify it for replacement of cement in manufacturing concrete blocks. The replacement of Portland cement by up to 5% residues did not cause a significant loss in compressive strength nor increase in water absorption of the blocks. Chemical tests indicated that there is no problem of leaching or solubilization of contaminants to the environment during the useful life of the concrete blocks, since the solidification/stabilization process led to the immobilization of waste in the cement mass. Therefore, the use of blasting dust in the manufacture of concrete paving blocks is promising, thus being not only an alternative for proper disposal of such waste as well as a possibility of saving raw materials used in the construction industry.

Application of Waste Concrete Powder as Silica Powder of Cement Extruding Panel (시멘트 압출패널의 규사분말 대체재로서 폐콘크리트 미립분의 활용)

  • Kim, Jin-Man;Kim, Kee-Seok;La, Jung-Min;Choi, Duck-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.88-94
    • /
    • 2011
  • To make recycling aggregate, quantity of fine particles increase due to multi-crushing. Though this particles were mixed with recycling aggregate, those have to be disparted from aggregate in the high quality recycling aggregate, because of the cause of low quality. Considering reactivity, fine particles is better than coarse one. Therefore, it needs to develop suitable usage. We try to make cement extruding material by using the fine particles from concrete recycling, as a silicious replacement. Test results are as follows ; 1) Waste concrete powder has major ingredients such as $SiO_2$ and CaO, its density is $2.45g/cm^3$ being similar to silica powder, its diameter is range 13 to $141{\mu}m$. 2) Considering to strength properties according to particle size, specimen was made using small particles is higher strength than large one. 3) Despite of exception in the autoclaved curing, when the replacement of waste fine particle increase, strength of extruding panel shows almost same level.

  • PDF

Understanding the Properties of Cement Mortar with Employment of Stone Dust considering Particle Size Distribution (입도분포를 고려한 석분 사용에 따른 시멘트 모르타르 성질의 변화 이해)

  • Kang, Su-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.715-723
    • /
    • 2017
  • This study investigates the properties of a high-performance cementitious composite with partial substitution of stone dust for fine aggregate. The relationship between the properties and particle size distribution was analyzed using several analytical models. Experiments were carried out to examine the flowability, rheology, and strength of cement mortars with different stone-dust replacement ratios of 0-30 wt.%. The results showed improved flowability, lower rheological parameters (yield stress and plastic viscosity), and improved strength as the amount of stone dust increased. These results are closely related to the packing density of the solid particles in the mortar. The effect was therefore estimated by introducing an optimum particle size distribution (PSD) model for maximum packing density. The PSD with a higher amount of stone dust was closer to the optimum PSD, and the optimization was quantified using RMSE. The improvement in the PSD by the stone dust was proven to affect the flowability, strength, and plastic viscosity based on several relevant analytical models. The reduction in yield stress is related to the increase of the average particle diameter when using stone dust.

Application of Waste Foundry Sand to Concrete-Based Product Having Low Water Cement Ratio (낮은 W/C비를 갖는 콘크리트 제품에 대한 폐주물사의 적용)

  • 이대경;김동주;조홍준;김진만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.79-84
    • /
    • 2001
  • Because the WFS(Waste Foundry Sand), by-product of a casting factory, is generally a smaller particle than a fine aggregate, it has a bad influence on quality of concrete. Especially, the grading of aggregate is a very important factor in the case of concrete-based products having low water cement ratio manufactured by vibration and pressing method. Therefore, it is necessary to use WFS with the suitable grading of aggregate that it don't has a bad Influence on the quality of concrete-based products. This study investigated the suitable using proportion of WFS by means of the composition method of aggregate suggested by Driscoll. The results showed that it was desirable to use 10% of WFS since higher strength was developed with that amount.

  • PDF

Strength Properties of Mortar Containg Metakaolin (메타카올린을 혼합한 모르타르의 강도특성)

  • Moon, Dae-Joong;Ju, Jae-Eok;Jo, Jeong-Hyun;Kang, Hyun-Jin;Choi, Yun-Wang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.639-642
    • /
    • 2005
  • Main components of metakaolin(MK) were $SiO_2\;and\;Al_2O_3$. and specific surface was 2.2 times larger than that of ordinary portland cement(OPC). MK indicated the fine particle and fiber texture. Flow value of mortar with MK was decreased linearly each $13\%$ as the replacement ratio of MK was increased each $5\%$. Compressive strength of mortar with MK was increased more than that of mortar with OPC by 3days. Compressive strength of mortar with $10\%$ MK was about 83MPa at 28 days. When MK was replaced with $10\%$ of cement volume, flexural strength and modulus of elasticity of mortar was indicated the maximum value at 28 days.

  • PDF