• Title/Summary/Keyword: Fine motion

Search Result 196, Processing Time 0.029 seconds

A Study on An Optimal Controller of Overhead Crane using the GAs (유전자 알고리즘을 이용한 천정 크레인의 최저제어기에 관한 연구)

  • 김길태;박예구;최형식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.112-117
    • /
    • 1997
  • This paper presents a GA(Genetic Algorithms)-Optical control strategy for the control of the swing motion and the transverse position of the overhead crane. The overhead crane system is defined uncertain due to unknown system parameters such as payload and trolly mass. To control the overhead crane. the GA-Optimal control scheme is suggested. which transfers a trolly to a desired place as fast as possible and minimizes the swing of the payload during the transfer. The genetic algorithms are applied to fine digital optimal feedback gains. A computer simulation demonstrate the performance of the proposed the GA-digital optimal controller for the overhead crane.

  • PDF

Dynamic Modeling of an Fine Positioner Using Magnetic Levitation (자기 부상 방식 미세 운동 기구의 동적 모델링)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1166-1174
    • /
    • 2000
  • In this paper, we introduce a positioner based on magnetic levitation to eliminate the friction which is the most severe effect to limit high resolution on the micro level. Differently from existing electromagnetic device, the proposed positioner consists of air core solenoid and permanent magnet. Although the combination produces small magnetic force, it is suitable for realizing micro motion repeatedly without the accumulation of error because there is no hysteresis caused by ferromagnetic materials, no eddy current loss, no flux saturation. First, the approximate modeling of stiffness and damping effects between the magnetic elements is made and verified experimentally. Then, we have formulated the dynamic equation of one d.o.f magnetic levitation positioner using linear perturbation method and discussed the necessity of optimization for the chief design parameters to maximize the stability performance.

Predictive Maintenance of the Robot Trouble Using the Machine Learning Method (Machine Learning기법을 이용한 Robot 이상 예지 보전)

  • Choi, Jae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • In this paper, a predictive maintenance of the robot trouble using the machine learning method, so called MT(Mahalanobis Taguchi), was studied. Especially, 'MD(Mahalanobis Distance)' was used to compare the robot arm motion difference between before the maintenance(bearing change) and after the maintenance. 6-axies vibration sensor was used to detect the vibration sensing during the motion of the robot arm. The results of the comparison, MD value of the arm motions of the after the maintenance(bearing change) was much lower and stable compared to MD value of the arm motions of the before the maintenance. MD value well distinguished the fine difference of the arm vibration of the robot. The superior performance of the MT method applied to the prediction of the robot trouble was verified by this experiments.

Intelligent Force Control of a Flip Chip Mounting System

  • Shim, Jae Hong;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.316-321
    • /
    • 2004
  • In this paper, we have developed a new mounting head system for flip chip. The proposed head system consists of a macro/micro positioning actuator for stable force control. The macro actuator provides the system with a gross motion while the micro device yields fine tuned motion to reduce the harmful impact force that occurs between very small sized electronic parts and the surface of a PCB(printed circuit board). In order to show the effectiveness of the proposed macro/micro chip mounting system, we compared the proposed system with the conventional chip mounting head equipped with a macro actuator only. A series of experiments were executed under the mounting conditions such as various access velocities and PCB stiffness. As a result of this study, a satisfactory voice coil actuator as the micro actuator has been developed, and its performance meet well the specifications desired for the design of the chip mounting head system and show good correspondence between theoretical analysis and experimental results.

A Stability Effect of Passive Compliance on Active Compliance Control (수동 Compliance가 능동적 Compliance제어의 안정도에 미치는 영향)

  • Chung, Tae-Sang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.1
    • /
    • pp.92-106
    • /
    • 1990
  • Active compliance is often used in the control of robot manipulators for the implementation of complex tasks such as assembly, multi-finger fine motion, legged-vehicle adaptive control,etc. This technique balances the interactive force between the manipulator tip and its working environment with its position and velocity errors to achieve the operation of a damped spring. This paper investigates the effecft of passive compliance on system stability with regard to force feedback implementation for actively compliant motion. Usually it is understood that accurate position control require a stiff system. However, theoretical examination of control experiments on a legged suspension vehicle suggests that, if the control includes discrete-time force feedback, some passive compliance is necessssary at the legs of the vehicle for system stability. This can be an important factor to bl considered in manipulator design and control. A theoretical analysis, numerical simulation, and experimental result, confirming the above conclusion, are introduced in this paper.

  • PDF

Development of an electric gripper system for intelligent manipulators (지능로보트를 위한 전기식 그리퍼의 개발에 관한 연구)

  • 이진원;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.216-221
    • /
    • 1989
  • Most of industrial robots are reprogrammable for various operations. while the gripper is only used for on - off grasping. If the gripper has the intelligent ability to interact with its environment, it will be very useful in many fine motion application. For this pur pose, an electric gripper system is, developed through experiments and simulation. This paper describes a method of the contact position between the gripper and the grasped object by using strain gauge sensors, and presents the related experimental results.

  • PDF

Image Sequence Stabilization Scheme Using FIR Filtering

  • Kim, Pyung-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.515-519
    • /
    • 2003
  • This paper proposes a new image sequence stabilization (ISS) scheme based on filtering of absolute frame positions. The proposed ISS scheme removes undesired motion effects in real-time, while preserving desired gross camera displacements. The well-known finite impulse response (FIR) filter is adopted for filtering. The proposed ISS scheme provides a filtered position and velocity with fine inherent properties. It is demonstrated that the filtered position is not affected by the constant velocity. It is also shown that the filtered velocity is separated from the position. Via numerical simulations, the performance of the proposed scheme is shown to be superior to the existing Kalman filtering scheme.

Dimension-Tolerance Design with Cost Factors (비용요소를 고려한 치수공차설계)

  • 강병철;윤원영
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.172-191
    • /
    • 1998
  • In this paper, dimension tolerance design for components is studied. Three cost factors are considered: machining cost, rework cost, and loss related to product quality which is affected by the tolerances of components. We propose a procedure to determine the optimal tolerances of components and a, pp.y the procedure to design the tolerances of fine motion stage in semicoduct machine. We compare the proposed procedure with the existing model for determining tolerance economically.

  • PDF

The Implementation of Generalized Visibility Graph (일반화 가시화 그래프의 구현)

  • 안진영;유견아
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.727-729
    • /
    • 2002
  • 가시화 그래프(visibility graph, Vgraph)는 로봇의 경로를 계획할 때, 최적의 경로를 구하기 위해 널리 이용되는 지도접근 방식중의 하나이다. 원래 Vgraph는 다각형으로 모델링된 로봇이 다각형 환경의 평면상에서 움직일 때 움직이는 로봇을 점으로 환산한 환경인 형상공간(configuration space, C-공간)에서 정의되었는데 이를 원형 로봇 혹은 일반화 다각형(generalized polygon) 환경으로 확장한 것이 일반화 가시화 그래프(GVgraph)이다. 본 논문에서는 기존의 다각형 환경에서 정의된 Vgraph를 형성하는 알고리즘과 동일한 시간복잡도로 GVgraph를 구현하는 알고리즘을 소개하고 미세 운동계획(fine motion planning)에 응용하는 예를 보여준다.

  • PDF

Design and Performance Evaluation of a 3-DOF Mobile Microrobot for Micromanipulation

  • Park, Jungyul;Kim, Deok-Ho;Kim, Byungkyu;Kim, Taesung;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1268-1275
    • /
    • 2003
  • In this paper, a compact 3-DOF mobile microrobot with sub-micron resolution is presented. It has many outstanding features : it is as small as a coin ; its precision is of sub-micrometer resolution on the plane ; it has an unlimited travel range ; and it has simple and compact mechanisms and structures which can be realized at low cost. With the impact actuating mechanism, this system enable both fast coarse motion and highly precise fine motion with a pulse wave input voltage controlled. The 1 -DOF impact actuating mechanism is modeled by taking into consideration the friction between the piezoelectric actuator and base. This modeling technique is extended to simulate the motion of the 3-DOF mobile robot. In addition, experiments are conducted to verify that the simulations accurately represent the real system. The modeling and simulation results will be used to design the model-based controller for the target system. The developed system can be used as a robotic positioning device in the micromanipulation system that determines the position of micro-sized components or particles in a small space, or assemble them in the meso-scale structure.