• Title/Summary/Keyword: Fine molding

Search Result 94, Processing Time 0.029 seconds

Comparison of the effects of irradiation on iso-molded, fine grain nuclear graphites: ETU-10, IG-110 and NBG-25

  • Chi, Se-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2359-2366
    • /
    • 2022
  • Selecting graphite grades with superior irradiation characteristics is important task for designers of graphite moderation reactors. To provide reference information and data for graphite selection, the effects of irradiation on three fine-grained, iso-molded nuclear grade graphites, ETU-10, IG-110, and NBG-25, were compared based on irradiation-induced changes in volume, thermal conductivity, dynamic Young's modulus, and coefficient of thermal expansion. Data employed in this study were obtained from reported irradiation test results in the high flux isotope reactor (HFIR)(ORNL) (ETU-10, IG-110) and high flux reactor (HFR)(NRL) (IG-110, NBG-25). Comparisons were made based on the irradiation dose and irradiation temperature. Overall, the three grades showed similar irradiation-induced property change behaviors, which followed the historic data. More or less grade-sensitive behaviors were observed for the changes in volume and thermal conductivity, and, in contrast, grade-insensitive behaviors were observed for dynamic Young's modulus and coefficient of thermal expansion changes. The ETU-10 of the smallest grain size appeared to show a relatively smaller VC to IG-110 and NBG-25. Drastic decrease in the difference in thermal conductivity was observed for ETU-10 and IG-110 after irradiation. The similar irradiation-induced properties changing behaviors observed in this study especially in the DYM and CTE may be attributed to the assumed similar microstructures that evolved from the similar size coke particles and the same forming method.

Mechanochemical Treatment of Quartz for Preparation of EMC Materials

  • Shin, Hee-Young;Chae, Young-Bae;Park, Jai-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.315-324
    • /
    • 2001
  • Mechanochemical effects that occurred in the fine grinding process of quartz particles using planetary ball mill was investigated. Quartz particles have been frequently utilized for optical materials, semiconductor molding materials. We determined that grinding for a long time can be create amorphous structures from the crystalline quartz by Mechanochemical effects. But, to be produced nano-composite particles that the critical grinding time reached for composite materials in a short time. Henceforth, a qualitative estimation must be conducted on the filler for EMC(Epoxy molding compound) materials. It can be produced mechanochemically treated composite materials and also an integrated grinding efficiency considering of the nano-composite amorphous structured particles. The mechanochemical characteristics were evaluated based on particle morphology, size distribution, specific surface area, density and the amount of amorphous phase materials into the particle surface. The grinding operation in the planetary ball mill can be classified into three stages. During the first stage, initial particle size was reduced for the increase of specific surface area. In the second stage, the specific surface areas increased in spite of the increase in particle size. The final stage as a critical grinding stage, the ground quartz was considered mechanochemically treated particles as a nano- composite amorphous structured particles. The development of amorphous phase on the particle surface was evaluated by X-ray diffractometry, thermal gravity analysis and IR spectrometer. The amount of amorphous phase of particles ground for 2048 minutes was 85.3% and 88.2% by X-ray analysis and thermal gravity analysis, respectively.

  • PDF

Precise Replica Technology Study for Fine Optical Waveguide Device (미세 광소자용 도파로 정밀 복제기술 연구)

  • Oh S.H.;Kim C.S.;Jeong M.Y.;Boo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1493-1496
    • /
    • 2005
  • In this paper, we describe a simple, precise and low cost method of fabricating PDMS stamp for UV embossing. It is important to improve the replication quality of stamp because the accuracy of fabricated structure is related to that of the stamp in UV embossing. The PDMS stamp has been fabricated by the replica molding technology with ultrasonic vibration to eliminate micro-air bubbles during the fabrication process of PDMS stamp. Also, this fabrication to use ultrasonic vibration promotes PDMS solution to fill into micro channel and edge parts. We report the fabrication of an optical core using UV embossing with fabricated PDMS stamp. This fabricated core is $7\;\mu{m}\;at\;depth,\;6\;\mu{m}\;at\;width.\;This\;measured\;value\;has\;the\;difference\;below\;1\;\mu{m}$compared to the original stamp. The surface roughness of core is about 14 nm root mean square. This is satisfactory value to use low-loss optical waveguide. Our successful demonstration of precise replica technology presents an alternative approach for the stamp of UV embossing.

  • PDF

Microstructure and Sintering Behavior of Injection Molded Fe Sintered Body Using Rapid Thermal Heating Process (급속승온공정을 이용한 사출성헝된 Fe 소결체의 미세조직 및 소결거동)

  • Kim Ki-Hyun;Han Jae-Kil;Yu Ji-Hun;Choi Chul-Jin;Lee Byong-Taek
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.528-534
    • /
    • 2004
  • Using the nano Fe powders having 50 nm in diameter, Fe compact bodies were fabricated by injec-tion molding process. The relationship between microstructure and material properties depending on the volume ratio of powder/binder and sintering temperature were characterized by SEM, TEM techniques. In the compact body with the volume percentage ratio of 45(Fe powder) : 55(binder), which was sintered at $700^{\circ}C,$ the relative density was about $97{\%},$ and the values of volume shrinkage and hardness were about $66.3{\%}$ and 242.0 Hv, respec-tively. Using the composition of 50(Fe powder) : 50(binder) and sintered at $700^{\circ}C,$ the values of relative density, volume shrinkage and hardness of Fe sintered bodies were $73.3{\%},\;47.6{\%}$ and 152.8 Hv, respectively. They showed brittle fracture mode due to the porous and fine microstructure.

Study on the Characteristics and Production Techniques of the Clay Seated Vairocana Buddha Triad of Seonunsa Temple, Gochang(2) - Analysis of Gold Leaf Layers and Internal Structure of the Clay Buddha Statues

  • Lee, Hwa Soo;Kim, Seol Hui;Kim, Won Woo;Yu, Yeong Gyeong;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.37 no.1
    • /
    • pp.43-54
    • /
    • 2021
  • In this study, a scientific analysis of the gold leaf layers and internal structure of the Clay Seated Vairocana Buddha Triad in Seonunsa Temple, Gochang (Treasure No. 1752) was conducted. The surface of the Buddha statues is a gold foil, and the gold leaf layer consists of four layers. The gold leaf layer first composed on the molding clay was produced in the order of lacquer-fabrics-lacquer-gold foil. Subsequently, it was confirmed that the work was performed three times in the same way. The composition of the Buddha statues was divided into the head, body or upper body, lower body, and pedestal. The body was made in a cylindrical form by connecting vertically oriented wooden materials, and the head and lower body were also connected to the body in an empty form. Thus, the head, body, and lower body are grafted structures that are connected to a single Bokjang-gong. It was confirmed that the Clay Seated Vairocana Buddha Triad in Seonunsa Temple was made using wood materials for the basic form, after which the detailed form was created with molding clay, and the surface was finished with a process of layering gold foil and substances presumed to be lacquer.

Hydrogen Perm-Selectivity Property of the Palladium Hydrogen Separation Membranes on Porous Stainless Steel Support Manufactured by Metal Injection Molding (금속 사출성형 방식의 다공성 스테인리스 강 지지체에 형성된 팔라듐 수소 분리막의 투과 선택도 특성)

  • Kim, Se-Hong;Yang, Ji-Hye;Lim, Da-Sol;Kim, Dong-Won
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.2
    • /
    • pp.98-107
    • /
    • 2017
  • Pd-based membranes have been widely used in hydrogen purification and separation due to their high hydrogen diffusivity and infinite selectivity. However, it has been difficult to fabricate thin and dense Pd-based membranes on a porous stainless steel(PSS) support. In case of a conventional PSS support having the large size of surface pores, it was required to use complex surface treatment and thick Pd coating more than $6{\mu}m$ on the PSS was required in order to form pore free surface. In this study, we could fabricate thin and dense Pd membrane with only $3{\mu}m$ Pd layer on a new PSS support manufactured by metal injection molding(MIM). The PSS support had low surface roughness and mean pore size of $5{\mu}m$. Pd membrane were prepared by advanced Pd sputter deposition on the modified PSS support using fine polishing and YSZ vacuum filling surface treatment. At temperature $400^{\circ}C$ and transmembrane pressure difference of 1 bar, hydrogen flux and selectivity of $H_2/N_2$ were $11.22ml\;cm^{-2}min^{-1}$ and infinity, respectively. Comparing with $6{\mu}m$ Pd membrane, $3{\mu}m$ Pd membrane showed 2.5 times higher hydrogen flux which could be due to the decreased Pd layer thickness from $6{\mu}m$ to $3{\mu}m$ and an increased porosity. It was also found that pressure exponent was changed from 0.5 on $6{\mu}m$ Pd membrane to 0.8 on $3{\mu}m$ Pd membrane.

Glass Fiber Composite Material with Polyurethane Toughener in Unsaturated Polyester Resin (UPR) (불포화 폴리에스터 (UPR)에 폴리우레탄을 첨가하여 강인성을 부여한 유리섬유 복합소재)

  • Baek, Chang Wan;Jang, Tae Woo;Kim, Taehee;Kim, Hye Jin;Kim, Hyeon-Gook;Kim, Changyoon;Seo, Bongkuk;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.63-68
    • /
    • 2021
  • Unsaturated Polyester Resin (UPR) is in general used as a resin to prepare for composite materials with reinforcing materials such as glass fibers. UPR, a thermosetting resin, is used in industry to prepare for sheet molding compound (SMC) molding prepreg that has excellent productivity and is advantageous for mass production among various molding methods of composite materials. The fiber-reinforced composite material using UPR as a matrix material is light and has the advantage of excellent physical properties, but it is weak against impact and is fragile. Four types of polyurethane were synthesized and added to UPR resin to overcome the shortcomings.

Fabrication of RFID Micro-pattern using Ultrasonic Vibration (초음파 진동을 이용한 RFID 미세패턴 성형)

  • Oh, Myung-Seok;Lee, Bong-Gu;Park, Myung-Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.344-349
    • /
    • 2017
  • In this study, we developed a process technology to fabricate RFID tag antennas using a one-sheet inlay micro-pattern forming process by press-molding RFID tag antennas on insulation sheet layers, such as polymer films, using ultrasonic longitudinal vibration. In addition, a fine pattern applicable for RFID tag antennas was manufactured using a $25{\mu}m$ thick thin-plate square wire; this is in contrast to the method that uses a conventional round wire. The developed ultrasonic indentation process can be used to fabricate fine pattern of the RFID antenna using one piece of equipment. The simplified manufacturing process technology has a shorter manufacturing time and is more economical. The developed RFID tag antenna forming technique involves pressing the $25{\mu}m$ square wire directly on the thin sheet insulation sheet of maximum thickness $200{\mu}m$, using a 60 kHz ultrasonic tool horn.

A Flexural Strength Properties of Extruding Concrete Panel Using Stone Powder Sludge (석분슬러지를 이용한 압출성형 콘크리트 패널의 휨강도 특성)

  • Choi Hun-Gug;Jung Eun-Hye;Kawg Eun-Gu;Kang Cheol;Seo Jung-Pil;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.115-118
    • /
    • 2006
  • Nowadays the using of concrete is generalized, and construction material is demanded to be lightweight according to increasing the height and capacity of buildings. Therefore, it needs to develop the products having the great quality and various performance. Extruding concrete panel made of cement, silica source, and fiber, and it is a good lightweight concrete material in durability and thermostable. The silica of important ingredient is natural material with hish SiO2 contents and difficult in supply because of conservation of environment. On the other hand, the stone powder sludge discharged about 20-30% at making process of crushed fine aggregate and it is wasted. The stone powder sludge is valuable instead of silica ole because the stone powder sludge includes water of about 20-60%, SiO2 of about 64% and it has fine particles. This experiment is on the properties of extruding concrete panel using the stone powder sludge use instead of silica. From this experiment, we find that it is possible to replace the silica as stone power sludge up to 50%,

  • PDF

Effect of Brown Oxide Formation on the Fracture Toughness of Leadframe/EMC Interface (Brown Oxide 형성이 리드프레임/EMC 계면의 파괴인성치에 미치는 영향)

  • Lee, H.Y.;Yu, J.
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.531-537
    • /
    • 1999
  • A copper based leadframe was oxidized in brown-oxide forming solution, then the growth characteristics of brown oxide and the effect of brown-oxide formation on the adhesion strength of leadframe to epoxy molding compound (EMC) were studied by using sandwiched double cantilever beam (SDCB) specimens. The brown oxide is composed of fine acicular CuO, and its thickness increased up to ~150 nm within 2 minutes and saturated. Bare leadframe showed alomost no adhesion to EMC, while once the brown-oxide layer formed on the Surface of leadframe, the adhesion strength increased up to ~80 J/$\m^2$ within 2 minutes. Correlation between oxide thickness, $\delta$ and the adhesion strength in terms of interfacial fracture toughness, $G_{c}$ was linear. Considering the above results, we might conclude that the main adhesion mechanism of brown-oxide treated leadframe to EMC is mechanical interlocking, in which fine acicular CuO plays a major role.e.

  • PDF