• Title/Summary/Keyword: Fine aggregate particle size

Search Result 56, Processing Time 0.024 seconds

Compressive Strength Evaluation of Concrete with Mixed Plastic Waste Aggregates Filled with Blast Furnace Slag Fine Powder (무기충진재를 혼입한 복합 폐플라스틱 골재를 활용한 콘크리트 압축강도 특성)

  • Lee, Jun;Kim, Kyung-Min;Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2021
  • Plastic wastes generated from household waste are separated by mixed discharge with foreign substances, and recycling is relatively low. In this study, the effect of the ratio and content of mixed plastic waste coarse aggregate(MPWCA)s and mixed plastic waste fine aggregate(MPWFA)s filled with blast furnace slag fine powder on the slump and compressive strength of concrete was evaluated experimentally. The MPWCAs were found to have a similar fineness modulus, but have a single particle size distribution with a smaller particle size compared to coarse aggregates. However, the MPWFAs were found to have a single particle size distribution with a larger fineness modulus and particle size compared to fine aggregates. Meanwhile, the effect of improving the density and filling pores by the blast furnace slag fine power was found to be greater in the MPWFA compared to the MPWCA. As the amount of the mixed plastic waste aggregate(MPWA)s increased, the slump and compressive strength of concrete decreased. In particular, the lower the slump and compressive strength of concrete was found to decrease the greater the amount of MPWFA than MPWCA when the amount of MPWA was the same. This is because of the entrapped air and voids formed under the angular- and ROD-shaped aggregates among the MPWFAs. On the other hand, the addition of the admixture and the increase in the unit amount of cement were found to be effective in improving the compressive strength of the concrete with MPWAs.

A Study on the Basic Property of Mortar as the Grading Distribution of Copper Slag Used as Fine Aggregate (잔골재로 사용한 동슬래그의 입도에 따른 모르타르의 기초적 특성 연구)

  • Lee Jong-Chan;Lee Mun-Hwan;Lee Sea-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.97-100
    • /
    • 2005
  • The purpose of this study is to research the basic property of mortar as the grading distribution of copper slag used as fine aggregate and the results are as follows. The compressive strength of mortar as the size of largest diameter of copper slag granule is the highest when the largest size is in 2.5-5mm, and flow of mortar is in proportion to the size. As the largest size of copper slag particle is under 2.5mm(Type 1) the compressive strength and flow is higher as the big granules is more included than small ones. As the largest size of copper slag granule is under 5mm(Type 2) the compressive strength and flow is similar to situation of Type 1, except compressive strength is higher as the percent of the size of granule in $2.5\~5mm$ is under 35$\%$. F.M.(Fine Modulus), compressive strength and flow is relative each other except the batch with 2.5$\∼$5mm granule size of copper slag.

  • PDF

Development of Drainage Asphalt Mixture Using Large Size Aggregate and Its Performance on Test Pavement

  • Ogino Shoji;Ohmae Tatsuhiko;Matsumoto Yuki;Yamada Masaru
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.107-117
    • /
    • 2006
  • Recently, there has been a remarkable trend of using aggregates at sizes smaller than 13 mm for drainage asphalt pavement (DAP) in order to reduce the noise generated between vehicle tires and road surface. These DAPs have their performance and durability seriously worsen after several years in-service due to the clogging of void space and the abrasion. This paper proposes the use of large size aggregates in porous asphalt mixtures to overcome these defects. Results of laboratory and field experiments on asphalt mixtures with several aggregate gradations are investigated and compared. The study focuses on advantages of DAP using large size aggregate and on particle size combinations containing no fine aggregates of size 2.36 mm or less, which have not been considered in current engineering practice.

  • PDF

The Characteristics on Infiltration of Fine-Grained Soil into Various Materials for Ground Drainage (지반 배수재에 따른 세립토의 관입특성)

  • Koh, Yongil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.39-43
    • /
    • 2015
  • In this study, the infiltration quantity of fine-grained soil into coarse-grained soil or aggregate for methods to accelerate consolidation drainage is checked by laboratory tests under various conditions and those characteristics on infiltration are examined closely. Irrespectively of pressures to fine-grained soil corresponding to stresses in a soil mass or moisture contents of fine-grained soil, fine-grained soil does not infiltrate into standard sand and marine sand, so it is verified that drain-resistance into sand mass of drainage / pile does not occur entirely and its shear strength would increase highly by water compaction. It is known that the infiltration depth of fine-grained soil into aggregate increases according that those size is larger in case of aggregates and it increases according that the pressure or the moisture contents is higher in case of same size aggregate. It is thought that drain-resistance into aggregate mass of drainage / pile would occurs by infiltrated fine-grained soil in advance though the infiltration depth of fine-grained soi of lower moisture content than liquid limit into 13 mm aggregate is low quietly. So gravel drain method or gravel compaction pile method, etc. using aggregate of gravels or crushed stones, etc. larger than sand particle size should be not applied in very soft fine-grained soil mass of higher natural moisture contents than liquid limit, and it is thought that its applying is not nearly efficient also in soft fine-grained soil mass of lower natural moisture contents than liquid limit.

A Basic Study on the Recycling of Dredged Sewage Sediment (하수도 준설토 재활용에 관한 기초 연구)

  • Kim, Hong Min;Choi, Yun Jeong;Yoon, Seok-Pyo;Kim, Jun Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.33-37
    • /
    • 2018
  • In order to recycle sewage dredging soil, we analyzed particle size distribution and organic content of dredged sewage sediments. Based on this, it was determined that particles with relatively low organic content of 1.0 mm or more could be recycled as fine aggregate. Although it was inorganic at the size of 5 mm or more, it contained a number of foreign substances other than fine aggregate, which were needed to be removed with a sieve. Since there are volatile suspended solids between 1.0 and 5.0 mm size, they were removed by means of flotation. Fine aggregate was obtained from dredging soil by screening followed with flotation method, and the proportion of fine aggregate obtained in this study was around 38 %.

Expansion behavior of concrete containing different steel slag aggregate sizes under heat curing

  • Shu, Chun-Ya;Kuo, Wen-Ten
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.487-502
    • /
    • 2015
  • This study investigated particle expansion in basic oxygen furnace slag (BOF) and desulfurization slag (DSS) after heat curing by using the volume method. Concrete hydration was accelerated by heat curing. The compressive strength, ultrasonic pulse velocity, and resistivity of the concrete were analyzed. Maximum expansion occurred in the BOF and DSS samples containing 0.30-0.60 mm and 0.60-1.18 mm particles, respectively. Deterioration was more severe in the BOF samples. In the slag aggregates for the complete replacement of fine aggregate, severe fractures occurred in both the BOF and DSS samples. Scanning electron microscopy revealed excess CH after curing, which caused peripheral hydration products to become extruded, resulting in fracture.

Effect of the Degree of Weathering on the Distribution of Aggregate Particle Size and the Generation of Fine Rock Particles during Crushing of Granite (화강암 파쇄시 풍화정도가 골재 입도분포 및 미석분 발생에 미치는 영향)

  • You, Byoung-Woon;Lee, Jin-Young;Lee, Dong-kil;Cheong, Young-Wook
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.429-438
    • /
    • 2022
  • This study evaluated the effect of the degree of weathering on the particle size distribution and the amount of fine particles generated in the aggregate production process during the crushing of igneous rock. Rock samples were collected from three areas with differences in strength from the Schmith hammer measurement at the aggregate quarry in Geochang, Gyeongsangbuk-do. After crushing with a jaw crusher under the same conditions in laboratory, particle size analysis, mineral analysis, chemical analysis, and weathering index were calculated. The Schmidt hammer measurements were 56, 28, and <10, and the CIA and CIW values of weathering index were also different, so the rock samples were classified into hard rock, soft rock, and weathered rock according to the weathering degree. It shows a smaller particle size distribution toward weathered rocks under the microscope, and the proportion of altered clay minerals such as sericite increased. The composition of feldspar and quartz was high for hard rock, and the ratio of muscovite and kaolinite was low. As a result of the crushing of the jaw crusher, hard rock produced a lot of coarse crushed material (13.2mm), while soft rock and weathered rock produced fine crushed material (4.75mm). The former showed the characteristics of the beta distribution curve, and the latter showed the bimodal distribution curve. The production of fine rock particles (based on 0.71mm of sieve, wt. %) increased to 13%<21%<22% in hard rock, soft rock, and weathered rock, and the greater the degree of weathering, the more fine rock particles were generated. The fine particles are recovered by the operation of the sand unit in the wet aggregate production process. Therefore, in order to minimize the amount of sludge generated in the aggregate production process, it was judged that a study on the optimal operation of cyclones could be necessary.

Improvement Particle and Physical Characteristics Applying of The Pretreatment Process System of Coal Gasification Slag and It's Verification Based on Statistical Approach (석탄 가스화 용융 슬래그의 전처리 공정 시스템 적용에 따른 입자 및 물리적 특성 개선 및 통계적 검증)

  • Kim, Jong;Han, Min-Cheol;Han, Jun-Hui
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.285-292
    • /
    • 2022
  • The objective of this study is to investigate whether CGS generated in IGCC satisfies the fine aggregate quality items specified in KS F 2527(Concrete Aggregate) through the pretreatment process system and the quality improvement the system. The statistical significance of the pretreatment process was analyzed through Repeated Measurements ANOVA as measured values according to individually pretreatment process system. As a result of the analysis, In the case of CGS fine aggregate quality before and after the pretreatment process system, the density increased 5.2 %, the absorption rate decreased by 1.86 %, the 0.08 mm passing ratio decreased by 2.25 %, and Fineness Modulus and Particle-size Distribution were also found to be adjustable. It was found that the pretreatment process system was significant in improving the quality of CGS.

Analyzing the Engineering Properties of Cement Mortar using Raw Coal Ash as a Microfines for the Mixed Aggregate (미정제 석탄회를 혼합골재의 미립분 보충재로 활용하는 시멘트 모르타르의 공학적 특성 분석)

  • Han, Cheon-Goo;Park, Byung-Moon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.219-225
    • /
    • 2018
  • The aim of the research is improving the quality of concrete by using the alternative aggregate resources and recycling wastes. To make a combined aggregate fitted in standard particle size distribution curve, crushed sand from blasted rock debris was used as a base aggregate. Additionally, to increase the portion of fine particles, sea sand was mixed. Although these aggregate combination fit the standard particle size distribution curve, in this research, raw coal ash was replaced as a microfine. According to the experiment, by replacing 5% raw coal ash, the most favorable results were achieved in aggregate gradation and cement mortar quality.

Investigation on the Enhancement of the Flotation Performance in Fine Molybdenum Particles Based on the Probability of Collision Model (충돌확률 모델에 의한 미립 몰리브덴광의 부유선별 효율 향상 연구)

  • Jisu Yang;Kyoungkeun Yoo;Joobeom Seo;Seongsoo Han
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.38-47
    • /
    • 2024
  • Molybdenite is the primary molybdenum resource and is extracted via flotation due to its unique hydrophobic surface. Meanwhile, the grade and crystal size of mined molybdenite are decreasing. As a result, the size of the molybdenum ore required for liberation is decreasing, and the flotation process's feed size input is also decreasing. Therefore, in order to secure molybdenum, it is necessary to perform research on the flotation for the fine molybdenite. In this study, we developed a method to enhance the flotation efficiency of fine molybdenite particles in the range of 5-30 ㎛. The methodology involved implementing bubble size reduction and particle aggregation. Through simulations of bubble-particle collision probability and flotation experiments, we were able to find the ranges of bubble size and particle aggregate size that make fine particles float more effectively. This range provided the conditions for effective flotation of fine molybdenite particles. Therefore, we will implement the flotation conditions established in this study for fine molybdenum ore to improve the flotation process in molybdenum mineral processing plants in the future.