• 제목/요약/키워드: Fine Tuning

검색결과 343건 처리시간 0.021초

Structural identification of gravity-type caisson structure via vibration feature analysis

  • Lee, So-Young;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.259-281
    • /
    • 2015
  • In this study, a structural identification method is proposed to assess the integrity of gravity-type caisson structures by analyzing vibration features. To achieve the objective, the following approaches are implemented. Firstly, a simplified structural model with a few degrees-of-freedom (DOFs) is formulated to represent the gravity-type caisson structure that corresponds to the sensors' DOFs. Secondly, a structural identification algorithm based on the use of vibration characteristics of the limited DOFs is formulated to fine-tune stiffness and damping parameters of the structural model. Finally, experimental evaluation is performed on a lab-scaled gravity-type caisson structure in a 2-D wave flume. For three structural states including an undamaged reference, a water-level change case, and a foundation-damage case, their corresponding structural integrities are assessed by identifying structural parameters of the three states by fine-tuning frequency response functions, natural frequencies and damping factors.

잡음훼손에 적합한 평가함수와 복원기법을 이용한 유전적 연산자의 개선 (Imrovement of genetic operators using restoration method and evaluation function for noise degradation)

  • 김승목;조영창;이태홍
    • 전자공학회논문지S
    • /
    • 제34S권5호
    • /
    • pp.52-65
    • /
    • 1997
  • For the degradation of severe noise and ill-conditioned blur the optimization function has the solution spaces which have many local optima around global solution. General restoration methods such as inverse filtering or gradient methods are mainly dependent on the properties of degradation model and tend to be isolated into a local optima because their convergences are determined in the convex space. Hence we introduce genetic algorithm as a searching method which will search solutions beyond the convex spaces including local solutins. In this paper we introudce improved evaluation square error) and fitness value for gray scaled images. Finally we also proposed the local fine tunign of window size and visit number for delicate searching mechanism in the vicinity of th global solution. Through the experiental results we verified the effectiveness of the proposed genetic operators and evaluation function on noise reduction over the conventional ones, as well as the improved performance of local fine tuning.

  • PDF

특징 선택을 위한 혼합형 유전 알고리즘과 분류 성능 비교 (Hybrid Genetic Algorithms for Feature Selection and Classification Performance Comparisons)

  • 오일석;이진선;문병로
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권8호
    • /
    • pp.1113-1120
    • /
    • 2004
  • 이 논문은 특징 선택을 위한 새로운 혼합형 유전 알고리즘을 제안한다. 탐색을 미세 조정하기 위한 지역 연산을 고안하였고, 이들 연산을 유전 알고리즘에 삽입하였다. 연산의 미세 조정 강도를 조절할 수 있는 매개 변수를 설정하였으며, 이 변수에 따른 효과를 측정하였다. 다양한 표준 데이타 집합에 대해 실험한 결과, 제안한 혼합형 유전 알고리즘이 단순 유전 알고리즘과 순차 탐색 알고리즘에 비해 우수함을 확인하였다.

양방향 인재매칭을 위한 BERT 기반의 전이학습 모델 (A BERT-based Transfer Learning Model for Bidirectional HR Matching)

  • 오소진;장문경;송희석
    • Journal of Information Technology Applications and Management
    • /
    • 제28권4호
    • /
    • pp.33-43
    • /
    • 2021
  • While youth unemployment has recorded the lowest level since the global COVID-19 pandemic, SMEs(small and medium sized enterprises) are still struggling to fill vacancies. It is difficult for SMEs to find good candidates as well as for job seekers to find appropriate job offers due to information mismatch. To overcome information mismatch, this study proposes the fine-turning model for bidirectional HR matching based on a pre-learning language model called BERT(Bidirectional Encoder Representations from Transformers). The proposed model is capable to recommend job openings suitable for the applicant, or applicants appropriate for the job through sufficient pre-learning of terms including technical jargons. The results of the experiment demonstrate the superior performance of our model in terms of precision, recall, and f1-score compared to the existing content-based metric learning model. This study provides insights for developing practical models for job recommendations and offers suggestions for future research.

BERT를 이용한 한국어 특허상담 기계독해 (Korean Machine Reading Comprehension for Patent Consultation Using BERT)

  • 민재옥;박진우;조유정;이봉건
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권4호
    • /
    • pp.145-152
    • /
    • 2020
  • 기계독해는(Machine reading comprehension) 사용자 질의와 관련된 문서를 기계가 이해한 후 정답을 추론하는 인공지능 자연어처리 태스크를 말하며, 이러한 기계독해는 챗봇과 같은 자동상담 서비스에 활용될 수 있다. 최근 자연어처리 분야에서 가장 높은 성능을 보이고 있는 BERT 언어모델은 대용량의 데이터를 pre-training 한 후에 각 자연어처리 태스크에 대해 fine-tuning하여 학습된 모델로 추론함으로써 문제를 해결하는 방식이다. 본 논문에서는 BERT기반 특허상담 기계독해 태스크를 위해 특허상담 데이터 셋을 구축하고 그 구축 방법을 소개하며, patent 코퍼스를 pre-training한 Patent-BERT 모델과 특허상담 모델학습에 적합한 언어처리 알고리즘을 추가함으로써 특허상담 기계독해 태스크의 성능을 향상시킬 수 있는 방안을 제안한다. 본 논문에서 제안한 방법을 사용하여 특허상담 질의에 대한 정답 결정에서 성능이 향상됨을 보였다.

깊은신경망을 이용한 회전객체 분류 연구 (A Study on Rotating Object Classification using Deep Neural Networks)

  • 이용규;이일병
    • 한국지능시스템학회논문지
    • /
    • 제25권5호
    • /
    • pp.425-430
    • /
    • 2015
  • 본 논문은 딥러닝 알고리즘을 적용한 깊은신경망을 이용하여 회전 객체의 분류 효율성을 높이기 위한 연구이다. 회전객체의 분류 실험을 위하여 데이터는 COIL-20을 사용하며 객체의 2/3영역을 학습시키고 1/3영역을 유추하여 분류한다. 연구에 이용된 3가지 분류기는 주성분 분석법을 이용해 데이터의 차원을 축소하면서 특징값을 추출하고 유클리디안 거리를 이용하여 분류하는 PCA분류기와 오류역전파 알고리즘을 이용하여 오류 에너지를 줄여가는 방식의 MLP분류기, 마지막으로 pre-training을 통하여 학습데이터의 관찰될 확률을 높여주고 fine-tuning으로 오류에너지를 줄여가는 방식의 딥러닝을 적용한 DBN분류기이다. 깊은신경망의 구조별 오류율을 확인하기 위하여 은닉층의 개수와 은닉뉴런의 개수를 변경해가며 실험하고 실제로 가장 낮은 오류율을 나타내는 구조를 기술한다. 가장 낮은 오류율을 보였던 분류기는 DBN을 이용한 분류기이다. 은닉층을 2개 갖는 깊은신경망의 구조로 매개 변수들을 인식에 도움이 되는 곳으로 이동 시켜 높은 인식률을 보여줬다.

명화 하브루타 지원을 위한 딥러닝 기반 동양화 인물 분석 (Deep Learning-based Person Analysis in Oriental Painting for Supporting Famous Painting Habruta)

  • 문혜영;김남규
    • 한국콘텐츠학회논문지
    • /
    • 제21권9호
    • /
    • pp.105-116
    • /
    • 2021
  • 하브루타 교육은 짝을 지어 대화하고 토론하고 논쟁하는 방식의 질문 중심 교육이며, 특히 명화 하브루타는 명화에 대한 질문과 답변을 통해 그림의 감상 능력을 증진하고 표현력을 풍부하게 하기 위한 목적으로 시행되고 있다. 본 연구에서는 동양화를 대상으로 한 명화 하브루타를 지원하기 위해, 최신 딥러닝 기술을 활용하여 동양화 등장인물의 성별 관점에서 질문을 자동으로 생성하는 방안을 제시한다. 구체적으로 본 연구에서는 사전학습모델인 VGG16을 바탕으로 동양화 인물 중심의 미세조정을 수행하여 동양화의 인물 분석을 효과적으로 수행할 수 있는 모델을 제안한다. 또한 질문의 유형을 명화 하브루타에서 사용되는 사실 질문, 상상 질문, 그리고 적용 질문의 3가지 유형으로 분류하고, 각 질문을 등장인물에 따라 세분화하여 총 9가지의 질문 패턴을 도출하였다. 제안 방법론의 활용 가능성을 확인하기 위해 실제 동양화의 등장인물 300건을 분석한 실험을 수행하였으며, 실험 결과 제안 방법론에 따른 성별 분류 모델이 기존 모델에 비해 높은 정확도를 나타냄을 확인하였다.

EfficientNet 활용한 딸기 병해 진단 서비스 (Strawberry disease diagnosis service using EfficientNet)

  • 이창준;김진성;박준;김준영;박성욱;정세훈;심춘보
    • 스마트미디어저널
    • /
    • 제11권5호
    • /
    • pp.26-37
    • /
    • 2022
  • 본 논문에서는 시설재배 작물 중 딸기의 초기 병해를 방제하고자 이미지를 자동으로 취득하고, EfficientNet 모델을 활용해 병해를 분석하여 농민에게 병해 여부를 알려주고, 전문가를 통한 병해 진단 서비스를 제안한다. 딸기 생육단계의 이미지를 취득하고, 학습된 EfficientNet 모델을 활용해 병해 진단 분석결과를 농민의 애플리케이션으로 전송 후 전문가의 피드백을 신속하게 받을 수 있다. 데이터 세트로는 실제 시설재배를 운영하는 농민을 섭외하여 시스템을 이용해 이미지를 취득하였고, 핸드폰으로 촬영한 이미지의 초안을 활용하여 데이터가 부족한 문제를 해결했다. 실험 결과 EfficientNet B0부터 B7까지의 정확도는 유사하여 추론 속도가 가장 빠른 B0를 채택했다. 성능향상을 위해 ImageNet으로 사전학습 된 모델을 사용해 Fine-tuning 했고, 100 Epoch부터 급격한 성능향상을 확인했다. 제안하는 서비스는 초기 병해를 빠르게 탐지하여 생산량을 증대시킬 것으로 기대한다.

Text summarization of dialogue based on BERT

  • Nam, Wongyung;Lee, Jisoo;Jang, Beakcheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.41-47
    • /
    • 2022
  • 본 연구는 일목요연하게 정리되지 않은 구어체(대화)에 대한 텍스트 자동 요약 모델을 적용시키는 방법을 제안한다. 본 연구에서는 구어체 데이터인 SAMSum 데이터를 활용하였고, 선행연구에서 문어체 데이터 텍스트 자동 요약 모델 연구에서 제안한 BERTSumExtAbs 모델을 적용하였다. SAMSum 데이터셋은 70% 이상은 두 사람 간 대화, 나머지 약 30%는 세 사람 이상 간 대화로 구성되어 있다. 본 논문에서는 텍스트 자동 요약 모델을 구어체 데이터에 적용하여, ROUGE Score R-1 부문에서 42.43 이상의 결과를 도출해내었다. 또한, 텍스트 요약 모델로 기존에 제안된 모델인 BERTSum 모델을 fine-tuning하여, 45.81의 높은 점수를 도출했다. 본 연구를 통하여 구어체 데이터에 대한 텍스트 생성 요약의 성능을 입증하였으며, 앞으로 사람의 자연어를 있는 그대로 컴퓨터가 이해하여 다양한 task를 해결하는 데 기초 자료로 활용되길 바란다.

합리적 가격결정을 위한 전이학습모델기반 아보카도 분류 및 출하 예측 시스템 (Avocado Classification and Shipping Prediction System based on Transfer Learning Model for Rational Pricing)

  • 유성운;박승민
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.329-335
    • /
    • 2023
  • 타임지가 선정한 슈퍼푸드이며, 후숙 과일 중 하나인 아보카도는 현지가격과 국내 유통 가격이 크게 차이가 나는 식품 중 하나이다. 이러한 아보카도의 분류과정을 자동화한다면 다양한 분야에서 인건비를 줄여 가격을 낮출 수 있을 것이다. 본 논문에서는 아보카도의 데이터셋을 크롤링을 통하여 제작하고, 딥러닝 기반 전이학습모델을 다수 사용하여, 최적의 분류모델을 만드는 것을 목표로 한다. 실험은 제작한 데이터셋에서 분리한 데이터셋에서 딥러닝 기반 전이학습모델에 직접 대입하고, 해당 모델의 하이퍼 파라미터를 Fine-tuning하며 진행하였다. 제작된 모델은 아보카도의 이미지를 입력하였을 때, 해당 아보카도의 익은 정도를 99% 이상의 정확도로 분류하였으며, 아보카도 생산 및 유통가정의 인력감소 및 정확성을 높일 수 있는 데이터셋 및 알고리즘을 제안한다.