• 제목/요약/키워드: Fine Dust Pollution

검색결과 147건 처리시간 0.022초

일부 학교 내 총부유세균 및 미세먼지의 상관성 비교 (Comparison of Correlation between Total Airborne Bacteria and Particulate Matter in University Spaces)

  • 서혜경;안하림
    • 한국산업보건학회지
    • /
    • 제34권2호
    • /
    • pp.115-124
    • /
    • 2024
  • Objectives: The aim of this study is to assess indoor air quality within and around buildings and evaluate the health risks associated with exposure to indoor air pollution. The study compares IAQ standards established by the World Health Organization with those set by South Korea's Ministry of Environment and Ministry of Education. Methods: The study utilized an Anderson Sampler and DustTrakTM II to collect samples of total airborne bacteria and PM in indoor and outdoor environments. Collected samples were analyzed using biological and biochemical methods. Statistical analysis was conducted using SPSS to examine the correlation between airborne bacteria and PM. Results: The study revealed that the concentration of total airborne bacteria in indoor air generally remained below the Ministry of Environment's standard of 800 CFU/m3, although it surpassed this threshold in certain instances. PM concentrations did not exceed the standards. Indoor fine dust concentration was higher when there were people (P<0.05). There was no difference in total floating bacterial concentrations between indoor and outdoor environments (P=0.184). Finally, there was a correlation between fine dust and airborne bacteria concentrations. Conclusion: The study evaluated the concentrations of total airborne bacteria and PM in indoor air, emphasizing the importance of managing IAQ. Further research in various environments is essential to ensure a healthy indoor environment. The findings underscore the need for ongoing research and management to enhance IAQ and create safer and healthier living environments.

항공기 기내 청소노동자의 분진, 초미세먼지(PM2.5) 및 블랙카본 노출수준 평가 (Exposure Assessment of Dust, Ultra Fine Dust(Particulate Matter 2.5, PM2.5) and Black Carbon among Aircraft Cabin Cleaners)

  • 박현희;김세동;김성호;박승현
    • 한국산업보건학회지
    • /
    • 제33권2호
    • /
    • pp.171-187
    • /
    • 2023
  • Objectives: Aircraft cabin cleaning work is characterized by being performed within a limited time in a narrow and enclosed space. The objective of this study was to evaluate the exposure levels to dust, ultra fine dust(PM2.5) and black carbon(BC) among aircraft cabin cleaners. Methods: Active personal air sampling for respirable dust(n=73) and BC(n=47) was conducted during quick transit cleaning(cabin general and vacuum-specific) and seat cover replacement and total dust and PM2.5 were area-air-sampled as well. Also, size distribution of particle was identified with the cleaning workers targeted. Dusts were collected with PVC filters using gravimetric analysis. The concentration of PM2.5 and the particle size distribution were measured with real-time direct reading portable equipment using light scattering analysis. The concentration of BC was measured by aethalometer(filter-based real-time light absorption analysis instrument). Results: The geometric mean of respirable dust was the highest at vacuum cleaning as 74.4 ㎍/m3, following by replacing seat covers as 49.3 ㎍/m3 and cabin general cleaning as 47.8 ㎍/m3 . The arithmetic mean of PM2.5 was 4.83 ~ 9.89 ㎍/m3 inside the cabin, and 28.5~44.5 ㎍/m3 outside the cabin(from bus and outdoor waiting space). From size distribution, PM2.5/PM10 ratio was 0.54 at quick transit cleaning and 0.41 at replacing seat covers. The average concentration of BC was 2~7 ㎍/m3, showing a high correlation with the PM2.5 concentration. Conclusions: The hazards concentration levels of aircraft cabin cleaners were very similar to those of roadside outdoor workers. As the main source of pollution is estimated to be diesel vehicles operating at airports, and it is necessary to replace older vehicles, strengthen pollutant emission control regulations, and introduce electric vehicles. In addition, it is necessary to provide as part of airport-inftastructure a stable standby waiting space for aircraft cabin cleaners and introduce a systematic safety and health management system for all workers in the aviation industry.

Development of High Spectral Resolution Lidar System for Measuring Aerosol and Cloud

  • Zhao, Ming;Xie, Chen-Bo;Zhong, Zhi-Qing;Wang, Bang-Xin;Wang, Zhen-Zhu;Dai, Pang-Da;Shang, Zhen;Tan, Min;Liu, Dong;Wang, Ying-Jian
    • Journal of the Optical Society of Korea
    • /
    • 제19권6호
    • /
    • pp.695-699
    • /
    • 2015
  • A high spectral resolution lidar (HSRL) system based on injection-seeded Nd:YAG laser and iodine absorption filter has been developed for the quantitative measurement of aerosol and cloud. The laser frequency is stabilized at 80 MHz by a frequency locking system and the absorption line of iodine cell is selected at the 1111 line with 2 GHz width. The observations show that the HSRL can provide vertical profiles of particle extinction coefficient, backscattering coefficient and lidar ratio for cloud and aerosol up to 12 km altitude, simultaneously. For the measured cases, the lidar ratios are 10~20 sr for cloud, 28~37 sr for dust, and 58~70 sr for urban pollution aerosol. It reveals the potential of HSRL to distinguish the type of aerosol and cloud. Time series measurements are given and demonstrate that the HSRL has ability to continuously observe the aerosol and cloud for day and night.

드론기반 대기오염 탐색을 위한 적정 탐색고도 연구 (Research on appropriate search altitude for drone-based air pollution search)

  • 하일규;김기현;김진형
    • 한국정보통신학회논문지
    • /
    • 제26권2호
    • /
    • pp.294-305
    • /
    • 2022
  • 최근 드론은 환경보호와 자연재해감시 등 환경문제 해결에 많이 활용되고 있다. 본 연구는 도심의 대기환경을 유지하기 위하여 대기오염을 탐색하는데 드론을 활용하고자 할 때 드론의 탐색고도 문제에 초점을 둔다. 특히, 드론을 활용하여 도시의 대기오염을 탐색할 때 대기오염원 별 그리고 통신모듈 별 적정한 탐색고도를 파악하기 위한 다양한 실험을 진행한다. 실험을 통해 가장 일반적인 대기오염원인 CO(일산화탄소), NO2(이산화질소), O3(오존), P10, P2.5(미세먼지)를 위한 최대측정가능고도를 파악하고, 각 대기오염원 별 유효한 탐색고도를 도출한다. 실험 결과 법적 측정가능고도 등 세 가지 유형의 드론 탐색고도가 제시되었다. 통신모듈 측정가능고도는 통신모듈에 따라 60m에서 120m로 나타났으며, 유효 측정가능고도는 10m에서 100m로 분석되었다.

2007년 봄철 대전지역에서 발생한 황사 및 대기부유물의 지구화학적 특성 및 중 금속의 오염도 (Geochemical Characteristics and Pollution Level of Heavy Metals of Asian Dust in Daejeon Area, 2007 (spring season))

  • 이평구;염승준;배법근
    • 자원환경지질
    • /
    • 제45권3호
    • /
    • pp.217-235
    • /
    • 2012
  • 본 연구에서는 2007년도 봄철 대전 지역에서 발생한 황사(황사 기간) 및 대기부유물(비황사 기간)의 미량원소의 지구화학적 특성과 정량적 오염정도를 평가하였다. 황사 내 미량원소의 함량은 황사발원지 토양의 평균 함량에 비하여 수십에서 수백 배 높은 함량을 보여주고 있으며, 비황사 시기의 대기부유물에서도 유사한 특성을 보이고 있어, 황사 시기뿐만 아니라 비황사 시기에도 중국으로부터 이동되는 오염물질의 영향을 받고 있음을 지시하고 있다. 입도별 미량원소의 함량은 $PM_{2.5}$에서 Cr, Cu, Pb, Zn, V, S, As, Cd, Co, Ni, Mo, Sb, Cs, Rb, Th, Sc, Y 등이, 그리고 TSP에서는 Zr, Sr, Ba, Li, Th, U 등의 함량이 가장 높은 것으로 나타났다. 황사의 S, Cd, Mo, Zn, Pb, Sb, Cu 및 Zr 함량은대기부유물과 큰 차이를 보이지 않으나, 대기오염으로 부화가 발생하지 않는 Li, Cs, Co, U, Cr, Ni, Rb, V, Th, Y, Sr, Sc 등은 황사에서 2-4.2배 높아졌다. 그러므로 이들 원소들을 황사발생의 지시원소로 사용할 수 있으며, 특히 Sr, V, Cr 및 Li 등은 황사 발생을 판단하기 위한 지시원소로 사용하기에 적합한 것으로 보인다. 한편 황사의 이동경로에 따른 미량원소의 함량을 살펴본 결과, 중국의 대도시 및 산업단지를 경유하여 국내 유입된 황사가, 북한을 경유하여 국내에 도달한 황사에 비해서, S, Cd, Zn, Pb, Cu, Mo 및 As 함량이 높게 나타나, 황사의 이동경로가 이들 미량원소 오염 여부 및 오염도를 결정하는데 중요한 역할을 하는 것으로 판단된다. 황사 및 대기부유물 내 미량원소의 부화지수(Enrichment factor)을 기준으로 오염정도를 분류한 결과, 환경재해 측면에서 가장 문제가 되는 미량원소는 S, Zn, Cu, Pb, As, Mo, Cd이며, 이들은 인간의 건강 뿐만 아니라, 오랜 기간 토양과 수계환경에 퇴적될 경우 환경오염으로 인한 주변 생태계에 해로운 영향을 미치게 될 것으로 판단된다.

대기오염에 따른 환경성 질환의 인자 분석: Big Data를 통한 Google 트렌드 데이터의 분석 및 영향 (Factor analysis of Environmental Disease by Air Pollution: Analysis and Implication of Google Trends Data with Big Data)

  • 최길용;이수민;이철민;서성철
    • 한국환경보건학회지
    • /
    • 제44권6호
    • /
    • pp.563-571
    • /
    • 2018
  • Objectives: The purpose of this study was to investigate the environmental pollution caused by exposure to air pollution in Korea. Therefore, it is necessary to investigate environmental and health factors through big data. Methods: Among the environmental diseases, the data centered on "percentage per day in 2015 to 2018". Data of environmental diseases and concentrations of air pollution monitoring network were analyzed. Results: Lung cancer and bronchiolitis obliterans were correlated with 0.027 and 0.0158, respectively, in the contamination concentration of fine dust ($PM_{10}$). Ozone, COPD, allergic rhinitis, and bronchiolitis obliterans were correlated with 0.0022, 0.0028 and 0.0093, respectively. At the concentration of $SO_2$ and the diseases of asthma, atopic dermatitis, lung cancer and bronchiolitis obliterans were 0.0008, 0.0523, 0.0016 and 0.0126, respectively. Conclusions: We surveyed the trends of air pollution according to the characteristics of Seoul area in Korea and evaluated the perception of Korea and the world. As a result, respiratory lung disease is thought to be a major factor in exposure to environmental pollution.

교반 볼밀을 이용한 왕겨재의 습식 미세분쇄에 관한 연구 (Wet Fine Grinding of Rice Husk Ash using a Stirred Ball Mill)

  • 박승제;김명호;최연규
    • Journal of Biosystems Engineering
    • /
    • 제31권1호
    • /
    • pp.33-38
    • /
    • 2006
  • This work was conducted to find the operating characteristics of an efficient wet grinding system designed to obtain fine rice husk ash powder. Once the rice husk was combusted and the thermal energy was recovered from the furnace, the ash was fed and pulverized in the grinding system resulting a fine powder to be used as a supplementary adding material to the portland cement. Grinding time (15, 30, 45 min), impeller speed (250, 500, 750 rpm), and mixed ratio (6.7, 8.4, 11.l, 20.9) were three operating factors examined for the performance of a wet-type stirred ball mill grinding system. For the operating conditions employed, mean diameter of fine ash powder, specific energy input, and grinding energy efficiency were in the range of $2.83{\sim}9.58{\mu}m,\;0.5{\sim}6.73kWh/kg,\;and\;0.51{\sim}3.27m^2/Wh$, respectively. With the wet-type stirred ball mill grinding system used in this study, the grinding energy efficiency decreased with the increase in total grinding time, impeller speed, and mixed ratio. The difference in specific surface area of powder linearly increased with logarithm in total number of impeller revolution and the grinding energy efficiency linearly decreased. Grinding time of 45 min, impeller speed of 500 rpm, and mixed ratio of 6.7 were chosen as the best operating condition. At this condition, mean particle diameter of the fine ash, grinding energy efficiency, grinding throughput, and specific energy input were $2.84{\mu}m,\;2.28m^2/Wh,\;0.17kg/h$, and 2.03kWh/kg, respectively. Wet fine grinding which generates no fly dust causing pollution and makes continuous operation easy, is appeared to be a promising solution to the automatization of rice husk ash grinding process.

Chemical Composition of Post-Harvest Biomass Burning Aerosols in Gwangju, Korea

  • Kim, Young-J.;Ryu, Seong-Y.;Kang, Gong-U.
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 International Symposium on Clean Environment
    • /
    • pp.79-84
    • /
    • 2003
  • The main objective of this study was to investigate the chemical characteristics of post-harvest biomass burning aerosols from field burning of barley straw in late spring and rice straw in late fall in rural area in Korea. 12-hr integrated intensive sampling of $PM_{10}$ and $PM_{2.5}$ biomass burning aerosols had been conducted continuously at Gwangju, Korea 4-15 June 2001 and 8 October-14 November 2002. The fine and coarse particles of biomass burning aerosols were collected for mass, ionic, elemental, and carbonaceous species analysis. Average fine and coarse mass concentrations of biomass burning aerosols were measured to be 129.6, 24.2 ${{\mu}gm}^{-3}$ in June 2001 and 47.1, 33.2 ${{\mu}gm}^{-3}$ in October to November 2002, respectively. Exceptionally high level of $PM_{2.5}$ concentration up to 157.8 ${{\mu}gm}^{-3}$ well above 24-hour standard was observed during the biomass burning event days under stagnant atmosphere condition. During biomass burning periods dominant ionic species were $Cl^{-}$, ${NO_3}^{-}$, ${SO_4}^{2-}$, and ${NH_4}^{+}$ in fine and coarse mode. In the fine mode $Cl^{-}$ and ${KCl}^{+}$ were unusually rich due to the high content of the semiarid vegetation. High OC values and OC/EC ratios were also measured during the biomass burning periods. Increased amount of fine aerosols with high enrichment, which were originated from biomass burning of post-harvest agricultural waste, resulted in extremely severe particulate air pollution and visibility degradation in the region. Particulate matters from open field burning of agricultural wastes cause great adverse impact on local air quality and regional climate.

  • PDF

철강 산업도시 포항의 미세먼지 농도 및 관련 기상자료에 대한 통계적 분석 (Statistical Analysis of PM10 and Meteorological Data in Pohang, a Steel-Industrial City)

  • 최민석;백성옥
    • 한국대기환경학회지
    • /
    • 제32권3호
    • /
    • pp.329-341
    • /
    • 2016
  • Pohang is a well-known industrial city in Korea with a large steel-industrial complexes. The biggest environmental issue in the city is associated with fine particulate matter (hereinafter, $PM_{10}$). The concentration of $PM_{10}$ is generally dependent on the local emission sources and meteorological conditions. Iron and steel industrial complexes are likely serious pollution sources of $PM_{10}$ in Pohang. In this study, daily $PM_{10}$ data from a large database from the year of 2000 to 2012 were statistically analyzed, together with meteorological data. The average concentrations of $PM_{10}$ were evaluated according to the frequency of Asian dust, haze, mist, and fog. The number of days exceeding short-term standard for $PM_{10}$ were also examined, taking into consideration of weather conditions. It was found that the concentration of $PM_{10}$ was reduced about 18% to 26% because of precipitation. In addition, the effects of wind direction and wind speed on the $PM_{10}$ concentrations were investigated.

실내 가상 경기를 위한 햅틱 AR 스포츠 기술 (Haptic AR Sports Technologies for Indoor Virtual Matches)

  • 김종성;장시환;양성일;윤민성
    • 전자통신동향분석
    • /
    • 제36권4호
    • /
    • pp.92-102
    • /
    • 2021
  • Outdoor sports activities have been restricted by serious air pollution, such as fine dust and yellow dust, and abnormal meteorological change, such as heatwave and heavy snow. These environmental problems have rapidly increased the demand for indoor sports activities. Virtual sports, such as virtual golf, virtual baseball, virtual soccer, etc., allow playing various sports games without going outdoors. Indoor sports industries and markets have seen rapid growth since the advent of virtual sports. Most virtual sports platforms use screen-based virtual reality techniques, which are why they are called screen sports. However, these platforms cannot support various sports games, especially virtual match games, such as squash, boxing, and so on, because existing screen-based virtual reality sports techniques use real balls and players. This article presents screen-based haptic-augmented reality technologies for a new virtual sports platform. The new platform does not use real balls and players to solve the limitations of previous platforms. Here, various technologies, including human motion tracking, human action recognition, haptic feedback, screen-based augmented-reality systems, and augmented-reality sports content, are unified for the new virtual sports platform. From these haptic-augmented reality technologies, the proposed platform supports sports games, including indoor virtual matches, that existing virtual sports platforms cannot support.