• Title/Summary/Keyword: Financial Performance#4

Search Result 659, Processing Time 0.026 seconds

A Study on Forecasting Accuracy Improvement of Case Based Reasoning Approach Using Fuzzy Relation (퍼지 관계를 활용한 사례기반추론 예측 정확성 향상에 관한 연구)

  • Lee, In-Ho;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.67-84
    • /
    • 2010
  • In terms of business, forecasting is a work of what is expected to happen in the future to make managerial decisions and plans. Therefore, the accurate forecasting is very important for major managerial decision making and is the basis for making various strategies of business. But it is very difficult to make an unbiased and consistent estimate because of uncertainty and complexity in the future business environment. That is why we should use scientific forecasting model to support business decision making, and make an effort to minimize the model's forecasting error which is difference between observation and estimator. Nevertheless, minimizing the error is not an easy task. Case-based reasoning is a problem solving method that utilizes the past similar case to solve the current problem. To build the successful case-based reasoning models, retrieving the case not only the most similar case but also the most relevant case is very important. To retrieve the similar and relevant case from past cases, the measurement of similarities between cases is an important key factor. Especially, if the cases contain symbolic data, it is more difficult to measure the distances. The purpose of this study is to improve the forecasting accuracy of case-based reasoning approach using fuzzy relation and composition. Especially, two methods are adopted to measure the similarity between cases containing symbolic data. One is to deduct the similarity matrix following binary logic(the judgment of sameness between two symbolic data), the other is to deduct the similarity matrix following fuzzy relation and composition. This study is conducted in the following order; data gathering and preprocessing, model building and analysis, validation analysis, conclusion. First, in the progress of data gathering and preprocessing we collect data set including categorical dependent variables. Also, the data set gathered is cross-section data and independent variables of the data set include several qualitative variables expressed symbolic data. The research data consists of many financial ratios and the corresponding bond ratings of Korean companies. The ratings we employ in this study cover all bonds rated by one of the bond rating agencies in Korea. Our total sample includes 1,816 companies whose commercial papers have been rated in the period 1997~2000. Credit grades are defined as outputs and classified into 5 rating categories(A1, A2, A3, B, C) according to credit levels. Second, in the progress of model building and analysis we deduct the similarity matrix following binary logic and fuzzy composition to measure the similarity between cases containing symbolic data. In this process, the used types of fuzzy composition are max-min, max-product, max-average. And then, the analysis is carried out by case-based reasoning approach with the deducted similarity matrix. Third, in the progress of validation analysis we verify the validation of model through McNemar test based on hit ratio. Finally, we draw a conclusion from the study. As a result, the similarity measuring method using fuzzy relation and composition shows good forecasting performance compared to the similarity measuring method using binary logic for similarity measurement between two symbolic data. But the results of the analysis are not statistically significant in forecasting performance among the types of fuzzy composition. The contributions of this study are as follows. We propose another methodology that fuzzy relation and fuzzy composition could be applied for the similarity measurement between two symbolic data. That is the most important factor to build case-based reasoning model.

Innovation Technology Development & Commercialization Promotion of R&D Performance to Domestic Renewable Energy (신재생에너지 기술혁신 개발과 R&D성과 사업화 촉진 방안)

  • Lee, Yong-Seok;Rho, Do-Hwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.4
    • /
    • pp.788-818
    • /
    • 2009
  • Renewable energy refers to solar energy, biomass energy, hydrogen energy, wind power, fuel cell, coal liquefaction and vaporization, marine energy, waste energy, and liquidity fuel made out of byproduct of geothermal heat, hydrogen and coal; it excludes energy based on coal, oil, nuclear energy and natural gas. Developed countries have recognized the importance of these energies and thus have set the mid to long term plans to develop and commercialize the technology and supported them with drastic political and financial measures. Considering the growing recognition to the field, it is necessary to analysis up-to-now achievement of the government's related projects, in the standards of type of renewable energy, management of sectional goals, and its commercialization. Korean government is chiefly following suit the USA and British policies of developing and distributing renewable energy. However, unlike Japan which is in the lead role in solar rays industry, it still lacks in state-directed support, participation of enterprises and social recognition. The research regarding renewable energy has mainly examinedthe state of supply of each technology and suitability of specific region for applying the technology. The evaluation shows that the research has been focused on supply and demand of renewable as well as general energy and solution for the enhancement of supply capacity in certain area. However, in-depth study for commercialization and the increase of capacity in industry followed by development of the technology is still inadequate. 'Cost-benefit model for each energy source' is used in analysis of technology development of renewable energy and quantitative and macro economical effects of its commercialization in order to foresee following expand in related industries and increase in added value. First, Investment on the renewable energy technology development is in direct proportion both to the product and growth, but product shows slightly higher index under the same amount of R&D investment than growth. It indicates that advance in technology greatly influences the final product, the energy growth. Moreover, while R&D investment on renewable energy product as well as the government funds included in the investment have proportionate influence on the renewable energy growth, private investment in the total amount invested has reciprocal influence. This statistic shows that research and development is mainly driven by government funds rather than private investment. Finally, while R&D investment on renewable energy growth affects proportionately, government funds and private investment shows no direct relations, which indicates that the effects of research and development on renewable energy do not affect government funds or private investment. All of the results signify that although it is important to have government policy in technology development and commercialization, private investment and active participation of enterprises are the key to the success in the industry.

  • PDF

Study on Operating System Improvements to the Competitiveness of Busan Port (부산항 경쟁력 강화를 위한 운영체제 개선에 관한 연구)

  • Seo, Su-Wan
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.4
    • /
    • pp.191-208
    • /
    • 2018
  • This paper focuses on the integration aspect of operators to determine an improvement strategy for the operating system to enhance competitiveness of Busan Port. This Study proposes the following alternatives: valuation standards for the integration of operators, the road map for the integration period, the scope and role setting of integrated operators' participation of Busan Port Authority(BPA), and the separation and linkage North Port and the New Port operators. First, the valuation standards for operator integration should be based on international standards. Additionally quantitative factors such as financial situation, business performance and participating companies' profitability, and the qualitative factors such as management ability, technology, and labor relations should be considered. Second, the timing of North Port's operator integration should be prioritized in the short term in conjunction with the commencement of its phase 2-4, 2-5, and 2-6. The integration of New Port operators should provide a road map for a relatively long-term perspective. Third, the participation of BPA' integrated operators should be considered in terms of publicity as a policy coordinator between terminals and by pursuing the profitability of entering into overseas business by fostering Korean global terminal operators. The scope and role of participation ensures that the experience and technology of the terminal operation business is maximized. Fourth, because physically intergrating the North Port' operator into a single corporate form is difficult, initially establishing a special purpose company to maximize the effect of the integrated operation is necessary. Then, the operators decided to convert to a holding company given the termination of the lease term contract with the State or BPA, and ultimately proposed a merger into a single corporation.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

An Exploratory Study of Purchasing Decision Making and Adoption on the RFID Purchasing Customer (RFID 구매고객의 구매 의사결정과 수용에 대한 탐색적 연구)

  • Seo, Pil-Su;Jang, Jang-Yi;Shim, Kyeng-Su
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.3 no.4
    • /
    • pp.89-116
    • /
    • 2008
  • RFID (Radio Frequency Identification) is regarded as a core technology of ubiquitous computing. Although it has some technical limitations such as technological standardization of RFID tags as well as economical limitations, many companies around the world have already accepted RFID to improve their management efficiency. In this regard, this study is to meet with results that the adoption of RFID technology willbring opportunities that companies' operational process are improved and customer satisfaction is highly strengthened. This research focuses on providing more understanding for building RFID marketing strategy to suppliers who want to sell their RFID products to customers through analyzing purchasing process. The findings are as follows; First, the study shows that buying center members usually take product reliability and precision of technical specification in the case of new-task buying situation while they put their first purchasing priority on prices in the straight rebuy. Second, the finding presents that in new-task buying situation and the straight rebuy purchasing personnel get information about new products through product performance test, organizational engineers, opinions from other companies' purchasing personnel, and checking out samples. Third, this research demonstrates when it comes to purchasing risk in their first purchasing, the persons who are in charge of material purchasing are inclined to be aware of the risk most in technical problems, followed by financial problems and time delay problems in order. And in addition to those risks are mentioned above, once-again-purchasers take the risk like an opportunity loss for better products into consideration. Fourth, the study shows that the role of concerning departments makes no difference in each purchasing stage. Accordingly marketers need to beef up the differentiated strategy to persuade their customers Fifth, the findings of this study demonstrate that purchasing decision making is much influenced by the final users. So suppliers are supposed to perform the most active marketing strategy at the first stage of purchasing through various resources. Finally, the study presents that the suppliers who will have had close relationships with their customers need to give consistent information to them so that their customers can have lower motive in purchasing products from competitors.

  • PDF

A Study on the Mobile Medical Service Program -Based on the Community Diagnosis of a Remote Farm Area- (순회진료사업(巡回診療事業)의 문제점(問題点)과 개선방향(改善方向) (일부(一部) 무의지역에 대(對)한 지역사진단(地域社診斷)을 중심(中心)으로))

  • Park, Hung-Bae;Choi, Dong-Wook
    • Journal of Preventive Medicine and Public Health
    • /
    • v.11 no.1
    • /
    • pp.86-97
    • /
    • 1978
  • The mobile medical service has been operated for many years by a number of medical schools and hospitals as a most convenient means of medical service delivery to the people residing in such area where the geographical and socioeconomic conditions are not good enough to enjoy modern medical care. Despite of official appraisal showing off simply with numbers of outpatients treated and medical persons participated, however, as well recognized, the capability (in respect of budget, equipment and time) of those mobile medical teams is so limitted that it often discourages the recipients as well as medical participants themselves. In the midst of rising need to secure medical service of good quality to all parts of the country, and of developing concept of primary health care system, authors evaluated the effectiveness of and problems associated with mobile medical servies program through the community diagnosis of a village (Opo-myun, Kwangju-gun) to obtain the information which may be halpful for future improvement. 1. Owing to the nationwide Sae-Maul movement powerfully practiced during last several years, living environment of farm villages generally and remarkably improved including houses, water supply and wastes disposal etc. Neverthless, due to limitations in budget time and lack of knowledge (probably the most important), these improvements tend to keep up appearances only and are far from the goal which may being practical benefit in promoting the health of the community. 2. As a result of intensive population policy led by the government since 1962, there has been considerable advances in understanding and the rate of practicing family planning through out the villages and yet, one should see many things, especially education, to be done. Fifty eight per cent of mothers have not received prenatal check and the care for most (72%) delivery was offered by laymen at home. 3. Approximately seven per cent of the population was reported to have chronic illness but since only a few (practically none) of the people has had physical check up by doctors, the actual prevalence of chronic diseases may reach many times of the reported. The same fact was observed also in prevalence of tuberculosis; the patients registered at local health center totaled 31 comprising only 0.51% while the numbers in two neighboring villages (designated as demonstration area of tuberculosis control and mass examination was done recently) were 3.5 and 4.0% respectively. Prevalence rate of all dieseses and injuries expereinced during one month (July, 1977) was 15.8%. Only one tenth of those patients received treatment by physicians and one fifth was not treated at all. The situation was worse as for the chronic patients; 84% of all cases either have never been treated or discontinued therapy, and the main reasons were known to be financial difficulty and ignorance or indifference. 4. Among the patients treated by our mobile clinic, one third was chronic cases and 45% of all patients, by the opinion of doctors attended, were those who may be treated by specially trained nurses or other paramedics (objects of primary care). Besides, 20% of the cases required professional managements of level beyond the mobile team's capability and in this sense one may conclude that the effectiveness (performance) of present mobile medical team is quite limitted. According to above findings, the authors would like to suggest following for mobile medical service and overall medicare program for the people living in remote country side. 1. Establishment of primary health care system secured with effective communication and evacuation (between villages and local medical center) measures. 2. Nationwide enforcement of medical insurance system. 3. Simple outpatient care which now constitutes the main part of the most mobile medical services should largely be yielded up to primary health care unit of the village and the mobile team itself should be assigned on new and more urgent missions such as mass screening health examination of the villagers, health education with modern and effective audiovisual aids, professional training and consultant services for the primary health care organization.

  • PDF

A Study on World University Evaluation Systems: Focusing on U-Multirank of the European Union (유럽연합의 세계 대학 평가시스템 '유-멀티랭크' 연구)

  • Lee, Tae-Young
    • Korean Journal of Comparative Education
    • /
    • v.27 no.4
    • /
    • pp.187-209
    • /
    • 2017
  • The purpose of this study was to highlight the necessity of a conceptual reestablishment of world university evaluations. The hitherto most well-known and validated world university evaluation systems such as Times Higher Education (THE), Quacquarelli Symonds (QS) or Academic Ranking of World Universities (ARWU) primarily assess big universities with quantitative evaluation indicators and performance results in the rankings. Those Systems have instigated a kind of elitism in higher education and neglect numerous small or local institutions of higher education, instead of providing stakeholders with comprehensive information about the real possibilities of tertiary education so that they can choose an institution that is individually tailored to their needs. Also, the management boards of universities and policymakers in higher education have partly been manipulated by and partly taken advantage of the elitist ranking systems with an economic emphasis, as indicated by research-centered evaluations and industry-university cooperation. To supplement such educational defects and to redress the lack of world university evaluation systems, a new system called 'U-Multirank' has been implemented with the financial support of the European Commission since 2012. U-Multirank was designed and is enforced by an international team of project experts led by CHE(Centre for Higher Education/Germany), CHEPS(Center for Higher Education Policy Studies/Netherlands) and CWTS(Centre for Science and Technology Studies at Leiden University/Netherlands). The significant features of U-Multirank, compared with e.g., THE and ARWU, are its qualitative, multidimensional, user-oriented and individualized assessment methods. Above all, its website and its assessment results, based on a mobile operating system and designed simply for international users, present a self-organized and evolutionary model of world university evaluation systems in the digital and global era. To estimate the universal validity of the redefinition of the world university evaluation system using U-Multirank, an epistemological approach will be used that relies on Edgar Morin's Complexity Theory and Karl Popper's Philosophy of Science.

Exploring A Research Trend on Entrepreneurial Ecosystem in the 40 Years of the Asia Pacific Journal of Small Business for the Development of Ecosystem Measurement Framework (「중소기업연구」 40년 동안의 창업생태계 연구 동향 고찰 및 측정모형 개발을 위한 탐색적 연구)

  • Seo, Ribin;Choi, Kyung Cheol;Byun, Youngjo
    • Korean small business review
    • /
    • v.42 no.4
    • /
    • pp.69-102
    • /
    • 2020
  • Shedding new light on the research trend on entrepreneurial ecosystems in the 40-year history of the Asia Pacific Journal of Small Business, this study aims at exploring a potential measurement framework of ecological inputs and outputs in an entrepreneurial ecosystem that promotes entrepreneurship at geographical and spatial levels. As a result of the analysis of research on the entrepreneurial ecosystem in the journal, we found that prior studies emphasized the managerial importance of various ecological factors on the premise of possible causalities between the factors and entrepreneurship. However, empirical research to verify the premised causality has been underexplored yet. This literature gap may lead to unbalanced development of conceptual and case studies that identify requirements for successful entrepreneurial ecosystems based on experiential facts, thereby hindering the generalization of the research results for practical implications. In that there is a growing interest in creating and operating productive entrepreneurial ecosystems as an innovation engine that drives national and regional economic growth, it is necessary to explore and develop the measurement framework for ecological factors that can be used in future empirical research. Hereupon, we apply a conceptual model of 'input-output-outcome-impact' to categorize individual environmental factors identified in prior studies. Based on the model. We operationalize ecological input factors as the financial, intellectual, institutional, and social capitals, and ecological output factors as the establishment-based, innovation-based, and performance-based entrepreneurship. Also, we propose several longitudinal databases that future empirical research can use in analyzing the potential causality between the ecological input and output factors. The proposed framework of entrepreneurial ecosystems, which focuses on measuring ecological input and output factors, has a high application value for future research that analyzes the causality.

What are the Characteristics and Future Directions of Domestic Angel Investment Research? (국내 엔젤투자 연구의 특징과 향후 방향은 무엇인가?)

  • Min Kim;Byung Chul Choi;Woo Jin Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.6
    • /
    • pp.57-70
    • /
    • 2023
  • The investigation delved into 457 pieces of scholarly work, encompassing articles, published theses, and dissertations from the National Research Foundation of Korea, spanning the period of the 1997 IMF financial crisis up to 2022. The materials were sourced using terms such as 'angel investment', 'angel investor', and 'angel investment attraction'. The initial phase involved filtering out redundant entries from the preliminary collection of 267 works, leaving aside pieces that didn't pertain directly to angel investment as indicated in their abstracts. The next stage of the analysis involved a more rigorous selection process. Out of 43 papers earmarked in the preceding cut, only 32 were chosen. The criteria for this focused on the exclusion of conference presentations, articles that were either not submitted or inconclusive, and those that duplicated content under different titles. The final selection of 32 papers underwent a thorough systematic literature review. These documents, all pertinent to angel investment in South Korea, were scrutinized under five distinct categories: 1) publication year, 2) themes of research, 3) strategies employed in the studies, 4) participants involved in the research, and 5) methods of research utilized. This meticulous process illuminated the existing landscape of angel investment studies within Korea. Moreover, this study pinpointed gaps in the current body of research, offering guidance on future scholarly directions and proposing social scientific theories to further enrich the field of angel investment studies and analysis also seeks to pinpoint which areas require additional exploration to energize the field of angel investment moving forward. Through a comprehensive review of literature, this research intends to validate the establishment of future research trajectories and pinpoint areas that are currently and relatively underexplored in Korea's angel investment research stream. This study revealed that current research on domestic angel investment is concentrated on several areas: 1) the traits of angel investors, 2) the motivations behind angel investing, 3) startup ventures, 4) relevant institutions and policies, and 5) the various forms of angel investments. It was determined that there is a need to broaden the scope of research to aid in enhancing and stimulating the scale of domestic angel investing. This includes research into performance analysis of angel investments and detailed case studies in the field. Furthermore, the study emphasizes the importance of diversifying research efforts. Instead of solely focusing on specific factors like investment types, startups, accelerators, venture capital, and regulatory frameworks, there is a call for research that explores a variety of associated variables. These include aspects related to crowdfunding and return on investment in the context of angel investing, ensuring a more holistic approach to research in this domain. Specifically, there's a clear need for more detailed studies focusing on the relationships with variables that serve as dependent variables influencing the outcomes of angel investments. Moreover, it's essential to invigorate both qualitative and quantitative research that delves into the theoretical framework from multiple perspectives. This involves analyzing the structure of variables that have an impact on angel investments and the decisions surrounding these investments, thereby enriching the theoretical foundation of this field. Finally, we presented the direction of development for future research by confirming that the effect on the completeness of the business plan is high or low depending on the satisfaction of the entrepreneurs in addition to the components.

  • PDF

Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis (CNN 보조 손실을 이용한 차원 기반 감성 분석)

  • Jeon, Min Jin;Hwang, Ji Won;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.1-22
    • /
    • 2021
  • Aspect Based Sentiment Analysis (ABSA), which analyzes sentiment based on aspects that appear in the text, is drawing attention because it can be used in various business industries. ABSA is a study that analyzes sentiment by aspects for multiple aspects that a text has. It is being studied in various forms depending on the purpose, such as analyzing all targets or just aspects and sentiments. Here, the aspect refers to the property of a target, and the target refers to the text that causes the sentiment. For example, for restaurant reviews, you could set the aspect into food taste, food price, quality of service, mood of the restaurant, etc. Also, if there is a review that says, "The pasta was delicious, but the salad was not," the words "steak" and "salad," which are directly mentioned in the sentence, become the "target." So far, in ABSA, most studies have analyzed sentiment only based on aspects or targets. However, even with the same aspects or targets, sentiment analysis may be inaccurate. Instances would be when aspects or sentiment are divided or when sentiment exists without a target. For example, sentences like, "Pizza and the salad were good, but the steak was disappointing." Although the aspect of this sentence is limited to "food," conflicting sentiments coexist. In addition, in the case of sentences such as "Shrimp was delicious, but the price was extravagant," although the target here is "shrimp," there are opposite sentiments coexisting that are dependent on the aspect. Finally, in sentences like "The food arrived too late and is cold now." there is no target (NULL), but it transmits a negative sentiment toward the aspect "service." Like this, failure to consider both aspects and targets - when sentiment or aspect is divided or when sentiment exists without a target - creates a dual dependency problem. To address this problem, this research analyzes sentiment by considering both aspects and targets (Target-Aspect-Sentiment Detection, hereby TASD). This study detected the limitations of existing research in the field of TASD: local contexts are not fully captured, and the number of epochs and batch size dramatically lowers the F1-score. The current model excels in spotting overall context and relations between each word. However, it struggles with phrases in the local context and is relatively slow when learning. Therefore, this study tries to improve the model's performance. To achieve the objective of this research, we additionally used auxiliary loss in aspect-sentiment classification by constructing CNN(Convolutional Neural Network) layers parallel to existing models. If existing models have analyzed aspect-sentiment through BERT encoding, Pooler, and Linear layers, this research added CNN layer-adaptive average pooling to existing models, and learning was progressed by adding additional loss values for aspect-sentiment to existing loss. In other words, when learning, the auxiliary loss, computed through CNN layers, allowed the local context to be captured more fitted. After learning, the model is designed to do aspect-sentiment analysis through the existing method. To evaluate the performance of this model, two datasets, SemEval-2015 task 12 and SemEval-2016 task 5, were used and the f1-score increased compared to the existing models. When the batch was 8 and epoch was 5, the difference was largest between the F1-score of existing models and this study with 29 and 45, respectively. Even when batch and epoch were adjusted, the F1-scores were higher than the existing models. It can be said that even when the batch and epoch numbers were small, they can be learned effectively compared to the existing models. Therefore, it can be useful in situations where resources are limited. Through this study, aspect-based sentiments can be more accurately analyzed. Through various uses in business, such as development or establishing marketing strategies, both consumers and sellers will be able to make efficient decisions. In addition, it is believed that the model can be fully learned and utilized by small businesses, those that do not have much data, given that they use a pre-training model and recorded a relatively high F1-score even with limited resources.