• Title/Summary/Keyword: Final Heating Temperature

Search Result 99, Processing Time 0.03 seconds

A Process for the Control of Cell Size of 6061 Al foams by Multi-step Induction Heating Method (다출력 유도가열 공정을 이용한 다공질 6061 알루미늄 합금의 기공 제어 공정)

  • 윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.449-456
    • /
    • 2003
  • Multi-step induction heating process was applied to the powder compact melting technique as a new heating process to achieve pinpoint accuracy, faster cycle time, repeatability, non-contact and energy-efficient heat in a minimal amount of time. The objective of this study is the establishment of the input data diagram of multi step induction heating process for automation of the fabrication process of 6061 Al foams with desired density. At first, proper induction coil was designed to obtain a uniform temperature distribution over the entire cross sectional area of specimen. By using this coil, foaming experiments were performed to investigate the multi-step induction heating conditions such as capacity, temperature and time conditions of each heating and holding step. On the basis of the obtained multi-step induction heating conditions, relationship between final heating temperature and fraction of porosity was investigated.

Processing of NiTi Shape Memory Alloy by Self- propagating High-temperature Synthesis (자전 고온 반응 합성법을 이용한 NiTi계 형상기억 합금의 제조에 관한 연구)

  • 윤종필
    • Journal of Powder Materials
    • /
    • v.2 no.2
    • /
    • pp.158-164
    • /
    • 1995
  • Synthesis of the NiTi shape memory alloy using the thermal explosion mode of the self-propagating high-temperature synthesis has been investigated. The significant fractions of intermetallics phases were found to form at the Ti/Ni powder interface during the heating to the ignition temperature and seemed to influence the relative fraction of phases in the final products. As the heating rate to the ignition temperature was increased, the combustion temperature and the fraction of NiTi in the final reaction products were increased. The synthesis reaction under 70 MPa compressive pressure yielded a reaction product with 98% theoretical density.

  • PDF

Heating and Cooling Time for Veneer Bolt of Some Softwoods (수종(數種)의 침엽수(針葉樹) 단판용(單板用) 원목(原木)의 가열(加熱)과 냉각(冷却) 시간(時間))

  • Jung, Hee-Suk;Lee, Nam-Ho;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.16-22
    • /
    • 1995
  • The profiles of the heating temperature in three water vat temperatures (55, 66 and 77$^{\circ}C$) and the cooling temperature under the average ambient temperature of 3$^{\circ}C$ in 4 and 10cm depths from surface at the center of veneer bolts length showed similar patterns for Japanese larch (Larix leptolepis). Dahurian larch (Larix gmelinei) and Radiata pine (Pinus radiata). The difference of these core temperatures of 10cm depth from surface varied proportionally with the increase of vat temperatures. The average heating time based on final core temperature of 6$^{\circ}C$ lower than vat temperature required about 14.5 hours in vat temperature of 55$^{\circ}C$ and 13.5 hours in vat temperature of 66and 77$^{\circ}C$. Each internal temperature of 4 and 10cm depths from surface started to decrease from the beginning of cooling and after about two hours.

  • PDF

Effects of Quasi-Carbonization Process on the Mechanical Properties of Spun Yarn Type Quasi-Carbon Fabrics

  • Donghwan Cho;Lee, Jongmoon;Park, Jon-Kyoo
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.318-324
    • /
    • 2002
  • In this paper we have extensively studied what and how processing parameters for quasi-carbonization influence the breaking strength and modulus of resulting quasi-carbon fabrics that are prepared from stabilized PAN fabrics with a spun yarn texture. Seven processing parameters have been considered as follows: applied tension, final heat-treatment temperature, heating rate, heating step, holding time, cooling rate, and purging gas purity. The results indicate that optimal uses of applied tension, final heat-treatment temperature, heating rate, and heating step during quasi-carbonization process are primarily important to increase the tensile properties of quasi-carbon fabrics and holding time, cooling rate, and purging gas purity are less importantly contributed.

Time-Dependent Optimal Heater Control Using Finite Difference Method

  • Li, Zhen-Zhe;Heo, Kwang-Su;Choi, Jun-Hoo;Seol, Seoung-Yun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2254-2255
    • /
    • 2008
  • Thermoforming is one of the most versatile and economical process to produce polymer products. The drawback of thermoforming is difficult to control thickness of final products. Temperature distribution affects the thickness distribution of final products, but temperature difference between surface and center of sheet is difficult to decrease because of low thermal conductivity of ABS material. In order to decrease temperature difference between surface and center, heating profile must be expressed as exponential function form. In this study, Finite Difference Method was used to find out the coefficients of optimal heating profiles. Through investigation, the optimal results using Finite Difference Method show that temperature difference between surface and center of sheet can be remarkably minimized with satisfying Temperature of Forming Window.

  • PDF

Developing a Multi-Functional Smart Down Jacket Utilizing Solar Light and Evaluating the Thermal Properties of the Prototype (태양광을 활용한 스마트 다운재킷 개발 및 보온성능 평가)

  • Yi, Kyonghwa;Kim, Keumwha
    • Journal of Fashion Business
    • /
    • v.19 no.4
    • /
    • pp.92-108
    • /
    • 2015
  • This study aimed at developing a down jacket prototype that utilized sunlight as an alternative energy source with no air pollution. The jacket is filled with flexible solar panels and has a heat-generating function and LED function. In this study, three smart down jacket prototypes were developed, and the jacket's capabilities were demonstrated through the thermal effect on the performance test. The typical output voltage of the flexible solar panels was 6.4V. By connecting the 2 solar cell modules in series, the final output voltage was 12.8V. A battery charge regulator module was used the KA 7809 (TO-220) of 9V. Three heating pads were to be inserted into the belly of the jacket as direct thermal heating elements, and the LED module was configured, separated by a flash and an indicator. The smart down jacket was designed to prevent damage to the down pack without the individual devices' interfering with the human body's motion. Because this study provides insulation from extreme cold with a purpose, the jacket was tested for heat insulation properties of non-heating, heating on the back, heating on the abdomen, and heating on both the back and abdomen in a sitting posture in a static state. Thermal property analysis results from examining the average skin temperature, core temperature, and the temperature and humidity within clothing showed, that placing a heating element in one place was more effective than distributing the heating elements in different locations. Heating on the back was the most effective for maintaining optimal skin temperature, core temperature, and humidity, whereas heating on the abdomen was not effective for maintaining optimal skin temperature, core temperature, or humidity within clothing because of the gap between the jacket and the body.

Evaluation on Compressive Strength of Mortar and Concrete at Early Age Using Variable Cement and Self-heating Binder (시멘트 산지 및 자기발열분체 사용에 따른 모르타르 및 콘크리트의 저온에서의 압축강도성능 평가)

  • Hong, Seok-Beom;Kim, Woo-Jae;Yoo, Jo-Hyeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.152-153
    • /
    • 2016
  • In this research, we evaluate the performance for preventing frost damage at early age of mortar using variable cement and self-heating binder. Purpose of final research is preventing freezing and thawing by making the compressive strength 5MPa in 3days below zero temperature without heat curing. We compare the compressive strength of mortar and concrete using variable cements and self-heating binder in low temperature.

  • PDF

ASCENT THERMAL ANALYSIS OF FAIRING OF SPACE LAUNCH VEHICLE

  • Choi Sang-Ho;Kim Seong-Lyong;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.239-242
    • /
    • 2004
  • The fairing of the launch vehicles has a role of protecting the spacecraft from outer thermal, acoustical, and mechanical loads during flight. Among them, the thermal load is analyzed in the present study. The ascent thermal analyses include aerodynamic heating rate on every point of the fairing, heat transfer through the fairing and spacecraft, and the final temperature during ascent flight phase. A design code based on theoretical/experimental database is applied to calculate the aerodynamic heating rate, and a thermal math program, SINDA/Fluint, is considered for conductive heat transfer of the fairing. The results show that the present design satisfies the allowing temperature of the structure. Another important thermal problem, pyro explosive fairing separation device, is calculated because the pyro system is very sensitive to the temperature. The results also satisfies the pyro thermal condition.

  • PDF

Growth effects of novel heating system using heater-installed rearing tray on silkworm, Bombyx mori

  • Jeong, Chan Young;Kim, Kee Young;Kim, Nam-Suk;Kang, Sang Kuk;Park, Jong Woo;Cha, Ik Seob;Kim, Seong-Wan
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.1
    • /
    • pp.22-28
    • /
    • 2022
  • Silkworms are very sensitive to changes in temperature and humidity, and unless it is a suitable temperature and humidity to grow, the productivity and quality of silkworms are greatly reduced. Therefore, it is very important to manage temperature and humidity for silkworm feeding facilities. In particular, it is essential to install heating facilities in Asian countries with distinct seasonal changes. During the feeding period, many farms manage the temperature and humidity of feeding facilities by installing and using electric heaters inside the facilities. However, it is very difficult to manage the room temperature stably by the heaters. In addition, unlike the temperature inside the facility, silkworms could undergo severe temperature changes as the inside of the rearing tray could not be warm enough. In this study, in order to improve the previous heating method, the new rearing method that directly heats the bottom of the rearing tray was developed. Compared to the previous room-heating system, the novel heater-installed tray (HIT) system significantly reduced the change in temperature during the experimental period. In addition, the number of days of silkworm growth up to harvest was shortened, which was effective in growth performance, and it was also found that silkworms grew more uniformly in HIT system than in previous system. Moreover, as the heater tubes were installed directly under the rearing tray, it quickly dried mulberry leaves and silkworm feces after feeding, and as a result, the environment in the tray was greatly improved with decrease the labor of breeder. In conclusion, these results suggest that the heater-installed rearing tray method greatly improves silkworm quality, increases weight of silkworms, and final profits compared to the previous room heating system with electric heaters.

Development of a Low-power Walk-way for Anti-Icing (결빙 방지를 위한 저전력 갑판이동로 개발)

  • Bae, Sang-Eun;Cho, Su-gil;Lee, Woon-Seek
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.353-364
    • /
    • 2019
  • The walk-way means a passage installed on the deck of a ship so that a person can safely move under any circumstances. So, the walk-way has to maintain a temperature of $5^{\circ}C$ or more for anti/de-icing even at an ambient temperature of $-62^{\circ}C$, a temperature in polar region. At present, the walk-way with heating cable is used, but the anti/de-icing effect is insufficient due to low heat transfer efficiency. Also, it has a construction problem due to heavy weight. In this study, an walk-way with a CNT surface heating element is proposed for the high anti/de-icing effect and the heating value per unit volume. The international standard survey, conceptual design, and simulation for the structural safety and the heat transfer are performed for the development of the proposed walk-way. To enhance the performance, the case studies based on the simulation analysis are conducted. Finally, the final prototype, applying the optimum material and thickness (3.2t of SS400) based on the case study results, is fabricated and experimented.