• Title/Summary/Keyword: Fin-and-tube condenser

Search Result 56, Processing Time 0.028 seconds

The Performance Analysis of the Fin-Tube Heat Exchanger Using CFC Alternative Refrigerant (CFC 대체냉매를 사용한 핀-관 열교환기의 성능해석)

  • 박희용;박경우;차재병
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2358-2372
    • /
    • 1993
  • In this study, the computer modeling for prediction of the performance of fin-tube heat exchanger using alternative refrigerant, HFC-134a was developed and the computer program for calculating the various properties of HFC-134a and the existing refrigerant CFC-12 and HCFC-22 was made. The heat exchanger modeling is based on a tube-by-tube approach, which is capable of analysis for the complex coil array. Performance of each tube is analyzed separately by considering the cross-flow heat transfer with external airstream and the appropriate heat and mass transfer relationships. A performance comparison according to the different refrigerants is provided using this developed model. As the result of this study, total heat transfer rate of evaporator and condenser using HFC-134a were found higher than that of using CFC-12 for the same operating conditions. When the mass flow rate of HFC-134a was less than CFC-12 about 18. 16%, the cooling capacities of evaporator were found to be the same.

A Study on the Condensation Heat Transfer and Pressure Drop in Internally Grooved Tubes Used in Condenser (응축기용 낮은 핀관의 내부 나선 홈에 의한 응축 열전달 성능과 압력손실에 관한 연구)

  • Han, Kyuil;Cho, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.212-222
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

Condensing Performance Evaluation in Smooth and Micro-Fin Tubes for Natural Mixture Refrigerant (Propane/Butane) (프로판/부탄 혼합자연냉매의 평활관과 마이크로핀관 내의 응축성능평가)

  • Lee Sang-Mu;Lee Joo-Dong;Park Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.816-823
    • /
    • 2005
  • This paper deals with the heat exchange performance prediction of a counter flow type double-tube condenser for natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane in a smooth tube and a micro-fin tube. The local characteristics of heat transfer, mass transfer and pressure drop are calculated using a prediction method developed by the authors. The total pressure drop and the overall heat transfer coefficient are also evaluated on various heat exchange conditions. The calculated results of the natural refrigerant mixtures are compared with HCFC22. In conclusion, natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane are appropriate candidates for alternative refrigerant from the viewpoint of heat transfer characteristics.

A Study on Performance Characteristics of Heat Exchanger for Heat Pump with R410A Refrigerant (R410A 냉매를 사용한 열펌프용 열교환기의 형상에 따른 성능특성 연구)

  • 정규하;박윤철;오상경
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.340-348
    • /
    • 2004
  • The air and refrigerant side heat transfer performances are key parameters to improve heat transfer efficiency of the heat exchanger including the fan performance. Design of the fins, treatment of the tube inside, tube diameter and tube array effect heat transfer performance of the heat exchanger. The heat exchanger is used as a condenser at cooling mode and used as an evaporator at heating mode in the heat pump system. The heat pump system uses R410A as the refrigerant. The heat exchangers are consisted with 7 mm diameter tubes with slit-type fins. The study was conducted with variation of arrangement of the refrigerant path and air flow rate and refrigerant pressure drop and heat transfer rate were measured with a code tester. The capacity of the 3 path heat exchanger is more efficient than 2 or 4 path heat exchangers in heating or cooling modes.

A Numerical Study on the Performance Characteristics of a Power Plant Air-Cooled Condenser (ACC) Affected by Changes in Operating Conditions (발전소용 공랭식 응축기(ACC)의 작동조건 변화에 따른 성능특성에 대한 수치적 연구)

  • Park, Kyung-Min;Ju, Kihong;Park, Chang Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.243-250
    • /
    • 2017
  • A numerical study was conducted to calculate the cooling capacity variation of a power plant ACC (air-cooled condenser) caused by changes in operating conditions. A numerical model was developed using the ${\varepsilon}-NTU$ and finite volume method, containing 100 elements for a single low fin tube. The model was validated through a comparison of cooling capacity between the simulated values and manufacturer's data. Even though simple assumptions and previously presented heat transfer correlations were applied to the model, the prediction error was 1.9%. The simulated variables of the operating conditions were air velocity, air temperature, and mass flux. The analysis on the variation of thermal resistance along the tube showed that the water side thermal resistance was higher than the air side thermal resistance at the downstream end of the tube, indicating that the ACC capacity could be increased by applying technology to enhance in-tube flow condensation heat transfer.

Air-conditioner cycle simulation using tube-by-tube method (관순법을 이용한 공조기 사이클 시뮬레이션)

  • Yoon, Baek;Park, Hyun-Yeon;Yoo, Guk-Chul;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.499-510
    • /
    • 1999
  • A computer program was developed for simulating performance(capacity, power consumption and etc.) of air-conditioners using compressor, fin-tube heat exchanger and capillary tube. The program consists of five modules, condenser, evaporator, compressor, capillary tube simulation modules and properties modules of refrigerant and moist air, The present program is focused on R22 only, however can be easily extended for other refrigerants such as R407C and R410A just by adding property modules. The compressor simulation module utilizes performance maps supplied by manufacturers-map-based model. The condenser and evaporator simulation modules are modeled using tube-by-tube method. Simulation results(capacity and power consumption) were compared with calorimeter test results of actual air-conditioners of window and split types, where more than 82% of the data lied within ${\pm}5$% of the predicted results.

  • PDF

A Numerical Study on R410A Charge Amount in an Air Cooled Mini-Channel Condenser (공랭식 미소유로 응축기의 R410A 충전량 예측에 관한 수치적 연구)

  • Park, Chang-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.710-718
    • /
    • 2010
  • A numerical study was performed to predict refrigerant charge amount in a mini-channel condenser for a R410A residential air-conditioning system. Multi-channel flat tubes with 12 mini-channels of 1.17 mm average hydraulic diameter for each tube were applied to the condenser. The condenser consisted of 3 passes, and the first, second, and third pass had 44, 19, and 11 tubes, respectively. Each pass was connected by a vertical header. In this study, the condenser was divided into 410 finite volumes, and analyzed by an $\varepsilon$-NTU method. With thermophysical properties and void fraction models for each volume element, the R410A amount distribution and a total charge amount in the condenser were calculated. The predicted total charge amount was compared with the experimentally measured charge amount under a standard ARI A condition. The developed model could predict the charge amount in the mini-channel condenser within prediction errors from -23.9% to -3.0%. Air velocity distribution at the condenser face was considered as non-uniform and uniform by the simulation model, and its results showed that the air velocity distribution could significantly influence the charge amount and vapor phase distribution in the condenser.

Evaporating Heat Transfer Characteristics of R-290, R-600a Inside Horizontal Double Pipe Heat Exchangers (R-290, R-600a의 수평 이중관형 열교환기내 증발 특성)

  • 홍진우;노건상;권옥배;박기원;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.309-314
    • /
    • 2000
  • Experimental results for heat transfer characteristics of natural refrigerants R-290, R-600a and HCFC refrigerant R-22 during evaporating inside horizontal double pipe heat exchangers are presented. The experimental apparatus is basically a vapour heat pump system, composed of a compressor, a condenser, expansion devices, a evaporator, and some other peripheral devices. The test sections were horizontal double pipe heat exchangers, which were a pair of smoothed tube, having 10.07 mm ID, 12.07 mm OD, and grooved inner fin tube, having 12.70 mm OD, 0.25 mm fin height, and 75 fins. The local evaporating heat transfer coefficients of natural refrigerants were not much affected with the mass velocity than R-22 and it could be interpreted that the local evaporating heat transfer coefficients of R-22 were increased more than those of R-290, R-600a according to the increment of mass velocity. Moreover, the maximum increment of the heat transfer coefficient was found in R-290. The average heat transfer coefficient was obtained the maximum value in R-290 and the minimum value in R-22. It reveals that the natural refrigerant can be used as a substitute for R-22. In the grooved inner fin tube, 70% of the increment of the heat transfer coefficient was obtained compared to the smoothed tube.

  • PDF

Numerical Analysis of A Compressor Type of Dehumidifier : (II) Heat Transfer (압축식 제습기에 대한 수치해석 연구 : (II) 열전달)

  • Duong, Xuan Quang;Nguyen, Huy Hai;Kim, Kyu-Mok;Chung, Jae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.2
    • /
    • pp.92-99
    • /
    • 2018
  • A numerical analysis of a compressor dehumidifier has been conducted focusing on the air side heat transfer, which is a part of a series research on the dehumidifier. The moving reference frame was applied to the fan modeling, and the porous model was used for the evaporator and condenser modeling. Curve fitting obtained the inertial and viscous resistances parameters to the results of the physical model of the unit cell with actual shape of a fin tube. The porous model was validated within a reasonable computation time for the range of practical inlet velocity of a dehumidifier. A parametric study has been conducted for fin number, fan speed (i.e., air flow rate), and evaporator/condenser tube arrangement. ANOVA analysis showed the dependency of each parameter on the velocity and temperature uniformity, which are desirable for high performance of the dehumidifier.

Transient Computer Simulation of Evaporation and Condenser in an Automotive Air-Conditioning System (비정상과정에서 자동차 에어컨의 증발기 및 응축기의 컴퓨터 시뮬레이션)

  • Oh, Sang-Han;Shin, Dong-Woo;Won, Sung-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.19-24
    • /
    • 2000
  • The objective of this study is to develope a computer simulation model and estimate theoretically the transient performance characteristics of heat exchangers in an automotive air-conditioning system. To do that, the mathematical modelling of heat exchangers, such as evaporator and condenser, is presented first of all. For detail calculation, evaporator and condenser are divided into many sub-sections. Each sub-section is an elemental volume for transient modelling. The elemental volume is assumed to consist of three components, refrigerant, tube with fin, and air, and various properties including temperatures of three components are determined step along sub-sections. The properties of refrigerant R134a and air are calculated directly in the program. The heat transfer coefficients and pressure drop in single or two phase are also calculated by suitable empirical correlations. The overall tendencies of the simulation results were agreed well with those of actual situation.

  • PDF