• Title/Summary/Keyword: Fin and Tube Heat Exchanger

Search Result 264, Processing Time 0.029 seconds

Heat Transfer Enhancement for Fin-Tube Heat Exchanger Using Vortex Generators

  • Yoo, Seong-Yeon;Park, Dong-Seong;Chung, Min-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.109-115
    • /
    • 2002
  • Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin -circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of finn-flat tube heat exchanger without vertex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger At the same time, pressure losses for four types of heat exchanger is measured and compared.

Local and Overall Heat Transfer Characteristics of Fin- Flat Tube Heat Exchanger with Vortex Generators

  • Yoo, Seong-Yeon;Chung, Min-Ho;Park, Dong-Seong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.150-157
    • /
    • 2003
  • Local and overall heat transfer characteristics of fin-flat tube heat exchangers with and without vortex generators were investigated. Local heat transfer coefficients were measured with the heat exchanger model using naphthalene sublimation technique. In case of a fin-flat tube heat exchanger without vortex generators, only the horseshoe vortices formed around tubes augment the heat transfer. On the other hand, longitudinal vortices created artificially by vortex generators additionally enhance heat transfer in case of a fin-flat tube heat exchanger with vortex generators. Overall heat transfer coefficients were measured with the prototypes of the fin-flat tube heat exchanger with and without vortex generators in a wind tunnel and results were compared with those of a fin-circular tube heat exchanger with wavy fin. Friction losses for heat exchangers were also measured and compared. The fin-flat tube heat exchanger with vortex generators is found to be more effective than the fin-circular tube heat exchanger with wavy fin.

An Experimental Study on the Local and Overall Heat Transfer Characteristics of a Fin-Flat Tube Heat Exchanger (납작관형 핀-관 열교환기의 국소 및 총합 열전달 특성에 관한 실험적 연구)

  • 유성연;정민호;박동성;이상섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.939-947
    • /
    • 2002
  • Local and overall heat transfer characteristics of fin-flat tube heat exchangers with and without vortex generators are investigated. Local heat transfer coefficients are measured with the heat exchanger model using naphthalene sublimation technique. In case of a fin-flat tube heat exchanger without vortex generators, only the horseshoe vortices formed around tubes augment the heat transfer. On the other hand, longitudinal vortices created artificially by vortex generators enhance heat transfer dramatically in case of a fin-flat tube heat exchanger with vortex generators. Overall heat transfer coefficients are measured with the prototype of the fin-flat tube heat exchanger with and without vortex generators in a wind tunnel and results are compared with those of a fin-circular tube heat exchanger with wavy fin. Friction losses for heat exchangers are also measured and compared. The fin-flat tube heat exchanger with vortex generators is found to be more effective than the fin-circular tube heat exchanger with wavy fin.

Heat Transfer Characteristics of a Circular Fin-tube Heat Exchanger (원형휜-원형관의 열전달 특성)

  • 강희찬;조동영;강민철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.762-767
    • /
    • 2003
  • An experimental study was conducted to investigate the heat transfer characteristics of a circular finned-tube heat exchanger. The nineteen cases of configuration varying fin material, fin outer diameter and fin pitch were tested by means of the experiment and the numerical calculation. The measured heat transfer data for the circular finned-tube heat exchanger were provided. A transition of heat transfer was found in the case of low fin pitch. The thermal conductivity of fin affected on the pure heat transfer coefficient.

Heat Transfer Characteristics of Fin-Tube Heat Exchanger using Two-Port Tube of Small Inner Diameter by Mechanical Expansion (연결세경관을 이용한 휜관형 열교환기의 기계확관에 의한 전열특성)

  • Lee, Sangmu;Park, Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.428-433
    • /
    • 2016
  • The fin and tube heat exchanger using a two-port tube has in air-conditioner heat exchanger because heat transfer performance. This study investigates the feasibility of a fin and tube heat exchanger using two-port copper tube by mechanical expansion. The optimum size of the tube-expanding bullet for the heat exchanger using two-port tube was through numerical calculation. The heat exchanger using a two-port tube was fabricated by mechanical expansion, and the heat exchanger performance was evaluated condensation and evaporation experiments. Compared to the heat exchanger of a conventional circular tube, the pressure drop per unit length of the heat exchanger with a two-port tube decreased. Compared to the heat exchanger using a conventional circular tube, the overall heat transfer coefficient of heat exchanger with a two-port tube increased up to 13% in the case of condensation, and up to 25% in the case of evaporation. The two-port tube heat exchanger outperforms conventional heat exchanger for air conditioner with a inner grooved circular tube.

Comparison of Various Heat Exchanger Performances in order for Air Compressor Intercooler Application (공기압축기의 인터쿨러 선정을 위한 열교환기의 형상별 성능해석)

  • Yoo, Sang-Hoon;Park, Sang-Gu;Yoon, Jeong-Pil;Jeong, Ji-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.73-81
    • /
    • 2008
  • Intercooling and aftercooling are required in order to operate air compressor, these are conducted through air-cooled or water-cooled heat exchangers. This study aims to find more suitable type of heat exchanger as a water-cooled intercooler of air compressor. Comparative performance evaluation among fin-tube heat exchanger and shell-and-tube (S&T) heat exchanger having various tubes such as circular tube, spiral tube, and internally finned tube was conducted. Thermal-hydraulic performance of each heat exchanger type is evaluated in terms of temperature drop and pressure drop. The comparisons show that shell-and-tube heat exchangers may have similar and larger heat transfer capacity to the fin-tube heat exchanger if tube diameter is reduced and multiple pass is adopted. For these cases, however, compressed air pressure drop in shell-and-tube heat exchanger become much larger than that in fin-tube heat exchanger.

Thermal Performance Analysis of a Shell-and-Tube Heat Exchanger with Plate Fins of Various Shape (다양한 형상의 판형 휜을 장착한 원통다관형 열교환기의 열성능 해석)

  • 신지영;손영석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2004
  • In this study, a highly efficient shell-and-tube heat exchanger with plate fins is considered to improve thermal performance of the conventional shell-and-tube heat exchanger. This type of shell-and-tube heat exchanger with plate fins of various shape is simulated three-dimensionally using a commercial thermal-fluid analysis code. CFX4.4. The effect of the shape of the plate fin on heat transfer characteristics is also investigated by the simulation. Plate fins of four different shapes. plane, plane-slit. wave. and wave-slit fins, are considered. The flow fields, pressure drop and heat transfer characteristics in the heat exchanger are calculated. It is proved that the shell-and-tube heat exchanger with plate fins is superior to the conventional shell-and-tube heat exchanger without plate fins in terms of heat transfer. The shape of the plate fin is important in the performance of a heat exchanger such as heat transfer and pressure drop.

Experimental study of performance characteristics of various fin types for fin-tube heat exchanger (휜-관 열교환기에 있어서 각종 휜 형상의 성능 특성에 관한 실험적 연구)

  • Yoon, Baek;Kim, Young-Saeng;Park, Hwan-Young;Park, Hyun-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.484-491
    • /
    • 1999
  • Air side heat transfer and pressure drop for ø9.52 fin-tube heat exchanger with various types of slit and louver fins were measured, and compared with wave-slit fin. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively. Actual heat exchanger was tested using water, and the tests were performed for 2 row heat exchangers with 3 different fin spacings, 1.3, 1.5 and 1.7mm. The overall performance of the enhanced fins was evaluated by comparing heat transfer coefficient with respect to fan power.

  • PDF

Experimental Study of Performance Characteristics of Various Fin Types for Fin-Tube Heat Exchanger

  • Youn, Baek;Kim, Young-Saeng;Park, Hwan-Young;Park, Hyun-Yeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.29-38
    • /
    • 2000
  • Air side heat transfer and pressure drop for f 9.52 fin-tube heat exchanger with various types of slit and louver fins were measured, and compared with wave-slit fin. Longitudinal and transverse tube spacings of the heat exchangers are 21.65 mm and 25mm respectively. Actual heat exchanger was tested using water, and the tests were performed for 2 row heat exchangers with 3 different fin spacings, 1.3, 1.5 and 1.7 mm. The overall performance of the enhanced fins was evaluated by comparing heat transfer coefficient with respect to fan power

  • PDF

An Experimental Study on the Effects of Design Factors for the Performance of Fin-Tube Heat Exchanger Under Frosting Conditions (착상시 설계인자에 따른 핀-관 열교환기의 성능변화에 관한 실험적 연구)

  • 이관수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2657-2666
    • /
    • 1995
  • In this study, the effects of design factors of finned-tube heat exchanger, such as fin spacing and fin array on the frost growth and heat exchanger performance are investigated under a frosting condition. The results show that the amount of frost, frost density and blockage ratio of air flow passage increase with decreasing fin spacing. Heat transfer rate increases momentarily at the initial stage of frosting and then decreases. After that heat transfer rate continues to increase again to reach a maximum value and then decreases dramatically. It is shown that the time required for heat transfer rate to reach a maximum value becomes shorter with decreasing fin spacing, and after a maximum value, heat transfer rate decreases very fast. The maximum allowable blockage ratio is introduced to determine the operation limit of a finned-tube heat exchanger operating under frosting condition and is obtained as a function of fin spacing. It is also shown that heat transfer rate of heat exchanger with staggered fin array increases about 17% and the amount of pressure drop of air increases about 1~2 mmH$_{2}$O, compared with those of in-line type heat exchanger under frosting condition.