• Title/Summary/Keyword: Filtration rate

Search Result 710, Processing Time 0.034 seconds

Effects of Temperature and Salinity on the Survival and Metabolism of Tresus keenae (Mollusca: Bivalvia)

  • Shin Yun Kyung;Yang Moon-Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.161-166
    • /
    • 2005
  • We examined the variation in survival and the respiration and filtration rates of Tresus keenae in response to changes in water temperature and salinity. The survivorship of animals exposed to temperatures below $25^{\circ}C$ for 7 days was $80\%$; however, all test animals died on the fourth day at $28^{\circ}C$. The upper lethal temperature over 7 days was $25.9^{\circ}C$. After exposure to lower temperatures, $93\%$ ofthe animals survived at temperatures over $5^{\circ}C$ for 10 days. Survivorship rapidly decreased below $4^{\circ}C$ with all test animals dying at $2^{\circ}C$ on the eighth day. The $LT_{50}$ over 10 days was $4.8^{\circ}C$. The respiration and filtration rates of T. keenae increased as temperature increased. It is believed that energy consumption increases as a result of the increased respiration rate at temperatures above the upper lethal temperature. At temperatures below the lower lethal temperature, the metabolic rate of T. keenae was substantially lowered. In response to changes in salinity, the survivorship of T. keenae was $90\%$ at 30.2 psu after exposure for 5 days; at below 26.8 psu, all test animals died by the fifth day. The $LS_{50}$ was 29.1 psu. As salinity decreased, both the respiration rate and the filtration rate decreased. At 23.5 psu, the respiration and filtration rates decreased by 48 and $34\%$, respectively. These data have implications for increasing efficiency in the production and management of shellfish aquaculture farms.

Optimization of Coagulation and Media Filtration Process for Low Turbidity Seawater (저탁도 해수원수 특성에 적합한 응집 - 여과 공정의 최적화)

  • Son, Dong-Min;Jo, Myeong-Heum;Kim, Jeong-Sook;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.251-257
    • /
    • 2014
  • This research is focused on coagulation and sand filtration process as a pretreatment of RO seawater desalination. RO systems require sufficient and reliable pretreatment process to produce superior quality of RO feedwater that can mitigate RO membrane fouling. This experiment was conducted to investigate the effectiveness of coagulation and filtration process under various experimental conditions including different coagulant dose, flocculation mixing intensity and time, turbidity, and filtration rate. The experimental results showed that the optimum pretreatment conditions resulting in lower SDI value suitable for RO feedwater were coagulation pH 6.5, raw water turbidity greater than 4 NTU, and media bed depth greater than 550 mm. However, flocculation mixing intensity, coagulant dose, and filtration rate relatively affected little on the filtration efficiency.

Study on the Theoretical and Experimental Application of Filtration-Permeation Method (여과-투과 방법의 이론적, 실험적 응용에 대한 연구)

  • Song, Yun-Min;Yim, Sung-Sam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.161-167
    • /
    • 2008
  • Using an experimental method named filtration-permeation, the influence of sedimentation during filtration was studied for the suspensions composed of particles and that of flocs. The average specific cake resistances measured by filtration do not give accurate values because of the sedimentations during filtration, but the permeation data give quite accurate values. The prolonged permeation rates for the cake formed from particulate suspension do not change, but that rate from the floc filtration changes by the sweeping of flocculant. It is proposed that the cake compressibility can be measured with one set of filtration-permeation experiment by step increase of pressure during permeation period. The another experimental method which can shorten experimental time for floc filtration using filtrationpermeation is also proposed.

Effect of Electrolyte Filtration Accuracy on Electrochemical Machining Quality for Titanium Alloy

  • Zhiliang Xu;Zhengyang Xu;Hongyu Xu;Zhenyu Shen;Tianyu Geng
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.299-313
    • /
    • 2024
  • Electrochemical machining (ECM) is an effective manufacturing method for difficult-to-machine materials and is widely used in the precision manufacturing of aerospace components. In recent years, the requirements for the machining accuracy and surface integrity of ECM have become increasingly stringent. To further improve the machining quality, this work investigated the intricate laws between electrolyte filtration accuracy and machining quality. Electrolytes with different filtration accuracies were compared, and a numerical simulation was used to evaluate the change in temperature and bubble rate of the flow field in the machining area. Experiments were conducted on ECM of Ti-6Al-4V (TC4) alloy workpieces using electrolytes with different filtration accuracy. The workpiece machining accuracy and surface quality were analyzed, and the repetition accuracy of the workpiece was evaluated. The intricate laws between electrolyte filtration accuracy and machining quality were explored. It was found that when the electrolyte filtration accuracy is improved, so too is the machining quality of the ECM. However, once the filtration accuracy has reached a certain value, the machining quality has extremely limited improvement. By evaluating the repetition accuracy of processed workpieces in electrolytes with different filtration accuracies, it was found that when the filtration accuracy reaches a certain value, there is no positive correlation between the repetition accuracy and filtration accuracy. The result shows that, for the workpiece material and conditions considered in this paper, an electrolyte with 0.5㎛ filtration accuracy is suitable for the wide application of precision ECM.

The Relationship of the Filtration and the Side-scattered Dose in Verious Radiation Shielding Materials (방사선차폐물질(放射線遮蔽物質)에서 발생(發生)하는 측방산란선(側方散亂線)의 측정(測定))

  • Huh, Joon;Kim, Chang-Kyun
    • Journal of radiological science and technology
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 1984
  • Side-direction scattered dose from various radiation shielding materials was measured at 50cm distance from the central beam of primary ray by used several kinds of added filters for a x-ray deep therapeutic installation, the obtained results were as follows : 1. Dose rate by tube voltage was more increased at heavy filtration than light filtration. 2. Scattered doses produced by constant tube voltage in all shielding materials were decreased at heavier filtration. 3. Scattered doses produced by constant shielding material in all tube voltages were decreased at heavier filtration.

  • PDF

The Effect of Vacuum Pressure in Membrane Filtration Systems for the Efficient Detection of Bacteria from Natural Mineral Water

  • LEE, KI-YONG;CHANG-JAE WOO;TAE-RYEON HEO
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.124-128
    • /
    • 1998
  • The procedures currently used for determining microbiological quality of natural mineral water recommend filtration through membrane filters. In this study, we evaluated the effect of vacuum pressure for the accurate detection of bacteria from water samples seeded with Escherichia coli. We observed that the number of E. coli detected increased with increasing vacuum pressure. In order to examine the retention rate of bacteria in the holes of the membranes under the different pressures, the membrane filters were removed after filtration, washed with sterile water by vortexing, and placed on m-Endo agar plates. With all the filters tested, the number of E. coli retained within the filters at negative 600 mmHg was approximately 10 to $20\%$ higher than that obtained with 100 mmHg. These results demonstrate that the vacuum pressure exerted during the filtration procedure may affect the fixation of bacteria into some portions of openings in the membrane filter.

  • PDF

Physiological rhythms in the Oxygen Consumption and Filtration Rates of the Manila Clam, Ruditapes philippinarum (바지락의 산소비율 및 여수율의 생리적 리듬)

  • 정의영;신윤경;허성범
    • The Korean Journal of Malacology
    • /
    • v.15 no.2
    • /
    • pp.127-131
    • /
    • 1999
  • Changes in Oxygen consumption and filtration rates were investigated to understand physiological rhythms for 24 hours of the Manila clam, Ruditapes philippinarum. physiological rhythms in the oxygen consumption and filtration rates at 15$^{\circ}C$ and 25$^{\circ}C$ were showed diurnal tidal rhythms, appearing two peaks for 24 hours: maximum at night-high tide and minimum at day-low tide. No rapid variations in oxygen consumption and filtration rates for 24 hours appeared at two different water temperatures.

  • PDF

Evaluation of particulate removal in slow sand filtration processes (완속여과 공정에서 전처리 공정 도입에 따른 입자제거 효율평가)

  • Kim, Seong-Su;Bae, Chul-Ho;Park, No-Suk;Kang, Suk-Hyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.461-466
    • /
    • 2008
  • Because of their simplicity, efficiency, and economy, slow sand filters are appropriate means of water treatment for small water systems. In this study, the effect of filtration velocity and dirty skin (Schmutzdecke) was evaluated on the performance of turbidity removal. Also, removal characteristics of particulate were investigated in the case of the usage of non-woven fabric on the surface of sand and the application of PCF as pretreatment process. Comparative column tests were carried out for the various operation condition. From the result of column tests, filtration velocity had little effect on the turbidity removal rate. The formation of algal biofilm on the surface of media is helpful in turbidity removal, while non-woven fabric is not as effective as expected. The relative contribution of biomass and accumulated particulates to head loss development in slow sand filters requires further study.

High Cell Density Culture of Bifidobacterium longum by Cross-flow Filtration (Cross-flow filtration에 의한 Bifidobacterium longum의 고농도 배양)

  • Lee, Myong-Suk;Park, Yun-Hee
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.18-22
    • /
    • 1997
  • The conditions for production of high cell density of Bifidobacterium longum were investigated and the cross-flow filtration system was used to remove the inhibitory metabolites, lactic acid and acetic acid. The maximum cell growth was observed with glucose as carbon source at the concentration of 50 g/l at $37^{\circ}C$ with the initial pH 6.5. When B. longum was cultured in a cross-flow filtration system, the maximum cell growth was observed at a dilution rate(D) of $0.31\;h^{-1}$ and the dry cell weight was 16.4 g/l($3.5{\times}10^{10}\;cell/ml$), which was about four times higher than that obtained in the batch culture with pH control.

  • PDF

High-rate Removal of Algae by Using of Filtration System with Coagulant Addition (응집과 여과를 이용한 조류의 초고속 제어에 관한 연구)

  • Yun, Sang Leen;Kim, Dong Ha;Rhee, Young Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.221-228
    • /
    • 2002
  • Abundant growth of algae in raw water sources caused by eutrophication brings about significant side effects on water supply, such as taste and order problem, oxygen depletion, toxic material secretion, and filter clogging problem in water treatment process, etc. The purpose of this research is to remove the algae and phosphorus compounds in the Pal-dang reservoir promptly by using the upflow filtration system with coagulant addition. The filter tower consisted of sand media and sieve filter with air back-washing process. By using coagulation and filtration with $132{\mu}m$ pore size filter, about 55% and 70% of algae and phosphorus compounds were removed respectively. The experimental conditions were as follows; head loss of 0.2m, linear velocity of 200m/day, and filtration flux of 1000($L/m^2/day$). In the case of filtration with cartridge type filter of $25{\mu}m$ pore size, the filtration flux was about 7800 LMH, and the removal ratios of COD, SS, T-P, and Chlo-a. were 61%, 99%, 54%, and 98%, respectively. However, high pressure air back-washing process with should be required for the maintenance of such high filtration flux.