• Title/Summary/Keyword: Filtering Model

Search Result 908, Processing Time 0.026 seconds

Electrooculography Filtering Model Based on Machine Learning (머신러닝 기반의 안전도 데이터 필터링 모델)

  • Hong, Ki Hyeon;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.274-284
    • /
    • 2021
  • Customized services to a sleep induction for better sleepcare are more effective because of different satisfaction levels to users. The EOG data measured at the frontal lobe when a person blinks his eyes can be used as biometric data because it has different values for each person. The accuracy of measurement is degraded by a noise source, such as toss and turn. Therefore, it is necessary to analyze the noisy data and remove them from normal EOG by filtering. There are low-pass filtering and high-pass filtering as filtering using a frequency band. However, since filtering within a frequency band range is also required for more effective performance, we propose a machine learning model for the filtering of EOG data in this paper as the second filtering method. In addition, optimal values of parameters such as the depth of the hidden layer, the number of nodes of the hidden layer, the activation function, and the dropout were found through experiments, to improve the performance of the machine learning filtering model, and the filtering performance of 95.7% was obtained. Eventually, it is expected that it can be used for effective user identification services by using filtering model for EOG data.

Semantic-Based Web Information Filtering Using WordNet (어휘사전 워드넷을 활용한 의미기반 웹 정보필터링)

  • Byeon, Yeong-Tae;Hwang, Sang-Gyu;O, Gyeong-Muk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11S
    • /
    • pp.3399-3409
    • /
    • 1999
  • Information filtering for internet search, in which new information retrieval environment is given, is different from traditional methods such as bibliography information filtering, news-group and E-mail filtering. Therefore, we cannot expect high performance from the traditional information filtering models when they are applied to the new environment. To solve this problem, we inspect the characteristics of the new filtering environment, and propose a semantic-based filtering model which includes a new filtering method using WordNet. For extracting keywords from documents, this model uses the SDCC(Semantic Distance for Common Category) algorithm instead of the TF/IDF method usually used by traditional methods. The world sense ambiguation problem, which is one of causes dropping efficiency of internet search, is solved by this method. The semantic-based filtering model can filter web pages selectively with considering a user level and we show in this paper that it is more convenient for users to search information in internet by the proposed method than by traditional filtering methods.

  • PDF

Deep Learning-based Evolutionary Recommendation Model for Heterogeneous Big Data Integration

  • Yoo, Hyun;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3730-3744
    • /
    • 2020
  • This study proposes a deep learning-based evolutionary recommendation model for heterogeneous big data integration, for which collaborative filtering and a neural-network algorithm are employed. The proposed model is used to apply an individual's importance or sensory level to formulate a recommendation using the decision-making feedback. The evolutionary recommendation model is based on the Deep Neural Network (DNN), which is useful for analyzing and evaluating the feedback data among various neural-network algorithms, and the DNN is combined with collaborative filtering. The designed model is used to extract health information from data collected by the Korea National Health and Nutrition Examination Survey, and the collaborative filtering-based recommendation model was compared with the deep learning-based evolutionary recommendation model to evaluate its performance. The RMSE is used to evaluate the performance of the proposed model. According to the comparative analysis, the accuracy of the deep learning-based evolutionary recommendation model is superior to that of the collaborative filtering-based recommendation model.

Deep Learning-based Product Recommendation Model for Influencer Marketing (인플루언서를 위한 딥러닝 기반의 제품 추천모델 개발)

  • Song, Hee Seok;Kim, Jae Kyung
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.3
    • /
    • pp.43-55
    • /
    • 2022
  • In this study, with the goal of developing a deep learning-based product recommendation model for effective matching of influencers and products, a deep learning model with a collaborative filtering model combined with generalized matrix decomposition(GMF), a collaborative filtering model based on multi-layer perceptron (MLP), and neural collaborative filtering and generalized matrix Factorization (NeuMF), a hybrid model combining GMP and MLP was developed and tested. In particular, we utilize one-class problem free boosting (OCF-B) method to solve the one-class problem that occurs when training is performed only on positive cases using implicit feedback in the deep learning-based collaborative filtering recommendation model. In relation to model selection based on overall experimental results, the MLP model showed highest performance with weighted average precision, weighted average recall, and f1 score were 0.85 in the model (n=3,000, term=15). This study is meaningful in practice as it attempted to commercialize a deep learning-based recommendation system where influencer's promotion data is being accumulated, pactical personalized recommendation service is not yet commercially applied yet.

Simple Bayesian Model for Improvement of Collaborative Filtering (협업 필터링 개선을 위한 베이지안 모형 개발)

  • Lee, Young-Chan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.232-239
    • /
    • 2005
  • Collaborative-filtering-enabled Web sites that recommend books, CDs, movies, and so on, have become very popular on the Internet. Such sites recommend items to a user on the basis of the opinions of other users with similar tastes. This paper discuss an approach to collaborative filtering based on the Simple Bayesian and apply this model to two variants of the collaborative filtering. One is user-based collaborative filtering, which makes predictions based on the users' similarities. The other is item-based collaborative filtering which makes predictions based on the items' similarities. To evaluate the proposed algorithms, this paper used a database of movie recommendations. Empirical results show that the proposed Bayesian approaches outperform typical correlation-based collaborative filtering algorithms.

  • PDF

A FILTERING FOR DISCRETE MARKET SYSTEM WITH UNKNOWN PARAMETERS

  • Choi, Won
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.383-387
    • /
    • 2008
  • The problem of recursive filtering for discrete market model with unknown parameters is considered. In this paper, we develop an effective filtering algorithm for discrete market systems with unknown parameters and the error covariance equation determining the accuracy of the proposed algorithm is derived.

  • PDF

Collaborative Filtering Recommendation Algorithm Based on LDA2Vec Topic Model (LDA2Vec 항목 모델을 기반으로 한 협업 필터링 권장 알고리즘)

  • Xin, Zhang;Lee, Scott Uk-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.385-386
    • /
    • 2020
  • In this paper, we propose a collaborative filtering recommendation algorithm based on the LDA2Vec topic model. By extracting and analyzing the article's content, calculate their semantic similarity then combine the traditional collaborative filtering algorithm to recommend. This approach may promote the system's recommend accuracy.

  • PDF

Deep Neural Network-Based Beauty Product Recommender (심층신경망 기반의 뷰티제품 추천시스템)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.6
    • /
    • pp.89-101
    • /
    • 2019
  • Many researchers have been focused on designing beauty product recommendation system for a long time because of increased need of customers for personalized and customized recommendation in beauty product domain. In addition, as the application of the deep neural network technique becomes active recently, various collaborative filtering techniques based on the deep neural network have been introduced. In this context, this study proposes a deep neural network model suitable for beauty product recommendation by applying Neural Collaborative Filtering and Generalized Matrix Factorization (NCF + GMF) to beauty product recommendation. This study also provides an implementation of web API system to commercialize the proposed recommendation model. The overall performance of the NCF + GMF model was the best when the beauty product recommendation problem was defined as the estimation rating score problem and the binary classification problem. The NCF + GMF model showed also high performance in the top N recommendation.

Applying feature normalization based on pole filtering to short-utterance speech recognition using deep neural network (심층신경망을 이용한 짧은 발화 음성인식에서 극점 필터링 기반의 특징 정규화 적용)

  • Han, Jaemin;Kim, Min Sik;Kim, Hyung Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.64-68
    • /
    • 2020
  • In a conventional speech recognition system using Gaussian Mixture Model-Hidden Markov Model (GMM-HMM), the cepstral feature normalization method based on pole filtering was effective in improving the performance of recognition of short utterances in noisy environments. In this paper, the usefulness of this method for the state-of-the-art speech recognition system using Deep Neural Network (DNN) is examined. Experimental results on AURORA 2 DB show that the cepstral mean and variance normalization based on pole filtering improves the recognition performance of very short utterances compared to that without pole filtering, especially when there is a large mismatch between the training and test conditions.

Robustness Analysis of a Novel Model-Based Recommendation Algorithms in Privacy Environment

  • Ihsan Gunes
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1341-1368
    • /
    • 2024
  • The concept of privacy-preserving collaborative filtering (PPCF) has been gaining significant attention. Due to the fact that model-based recommendation methods with privacy are more efficient online, privacy-preserving memory-based scheme should be avoided in favor of model-based recommendation methods with privacy. Several studies in the current literature have examined ant colony clustering algorithms that are based on non-privacy collaborative filtering schemes. Nevertheless, the literature does not contain any studies that consider privacy in the context of ant colony clustering-based CF schema. This study employed the ant colony clustering model-based PPCF scheme. Attacks like shilling or profile injection could potentially be successful against privacy-preserving model-based collaborative filtering techniques. Afterwards, the scheme's robustness was assessed by conducting a shilling attack using six different attack models. We utilize masked data-based profile injection attacks against a privacy-preserving ant colony clustering-based prediction algorithm. Subsequently, we conduct extensive experiments utilizing authentic data to assess its robustness against profile injection attacks. In addition, we evaluate the resilience of the ant colony clustering model-based PPCF against shilling attacks by comparing it to established PPCF memory and model-based prediction techniques. The empirical findings indicate that push attack models exerted a substantial influence on the predictions, whereas nuke attack models demonstrated limited efficacy.