• 제목/요약/키워드: Filterable particulate matter

검색결과 6건 처리시간 0.018초

연소 배출가스 중 SO2 농도에 따른 응축성먼지 변화에 관한 연구 (A Study on the Change of Condensable Particulate Matter by the SO2 Concentration among Combustion Gases)

  • 유정훈;임슬기;송지한;이도영;유명상;김종호
    • 한국대기환경학회지
    • /
    • 제34권5호
    • /
    • pp.651-658
    • /
    • 2018
  • Particulate matter (PM) emitted from fossil fuel-combustion facilities can be classified as either filterable or condensable PM. The U.S. Environmental Protection Agency (EPA) defined condensable PM as material that is in the phase of vapor at the stack temperature of the sampling location which condenses, reacts upon cooling and dilution in the ambient air to form solid or liquid in a few second after the discharge from the stack. Condensable PM passed through the filter media and it is typically ignored. But condensable PM was defined as a component of primary PM. This study investigates the change of condensable PM according to the variation in the sulfur dioxide of combustion gas. Domestic oil boilers were used as the source of emission ($SO_2$) and the level of $SO_2$ concentration (0, 50, 80, and 120 ppm) was adjusted by diluting general light oil and marine gas oil (MGO) that contains sulfur less than 0.5%. Condensable PM was measured as 2.72, 6.10, 8.38, and $13.34mg/m^3$ when $SO_2$ concentration in combustion gas were 0, 50, 80, and 120 ppm respectively. The condensable PM tended to increase as the concentration of $SO_2$ increased. Some of the gaseous air pollutants emitted from the stack should be considered precursors of condensable PM. The gas phase pollutants which converted into condensable PM should reduced for condensable PM control.

고정오염원의 응축성 먼지 배출량을 고려한 서울과 인천의 먼지 관리방안 (PM Management Methods Considering Condensable PM Emissions from Stationary Sources in Seoul and Incheon)

  • 이임학;최두성;고명진;박영권
    • 한국대기환경학회지
    • /
    • 제33권4호
    • /
    • pp.319-325
    • /
    • 2017
  • In this study, the new particulate matter emissions considering condensable PM (CPM) of stationary pollutant sources were calculated to modify the CAPSS emissions based on only filterable PMs in Seoul and Incheon. When the new calculated emissions were compared to the existing filterable PM based emissions of local governments, different contribution patterns of emission sources were found. For example, the proportion of mobile sources was high when the filterable PM was considered; however, the contribution of non-industrial sources was dominant in Seoul when the emissions of CPM were considered. Also, the proportion of energy industrial combustion and manufacturing combustion sources was significant in Incheon when CPM emissions considered. Therefore, it seems to be much desirable to consider CPM emissions for determining adequate locations of collective energy facilities and manufacturing combustion facilities in the future. In addition, CPM should be considered to solve the dust problem nationwide. The emission analysis, diagnosis, prediction and countermeasures using CPM emissions should be appropriately performed.

고형연료제품 사용시설에서 배출되는 미세먼지 입경분율 분석 (Analysis of the Fine Particulate Matter Particle Size Fraction Emitted from Facilities Using Solid Refuse Fuel)

  • 유한조;정연훈;김진길;신형순;임윤정;이상수;손해준;임삼화;김종수
    • 한국환경보건학회지
    • /
    • 제46권6호
    • /
    • pp.719-725
    • /
    • 2020
  • Objectives: With the growth of national interest in fine particulate matter, many complaints about pollutants emitted from air pollution emitting facilities have arisen in recent years. In particular, it is thought that a large volume of particulate pollutants are discharged from workplaces that use Solid Refuse Fuel (SRF). Therefore, particulate contaminants generated from SRF were measured and analyzed in this study in terms of respective particle sizes. Methods: In this study, particulate matter in exhaust gas was measured by applying US EPA method 201a using a cyclone. This method measures Filterable Particulate Matter (FPM), and does not consider the Condensable Particulate Matter (CPM) that forms particles in the atmosphere after being discharged as a gas in the exhaust gas. Results: The mass concentration of Total Suspended Particles (TSP) in the four SRF-using facilities was 1.16 to 11.21 mg/Sm3, indicating a very large concentration deviation of about 10 times. When the fuel input method was the continuous injection type, particulate matter larger than 10 ㎛ diameter showed the highest particle size fraction, followed by particulate matter smaller than 10 ㎛ and larger than 2.5 ㎛, and particulate matter of 2.5 ㎛ or less. Contrary to the continuous injection type, the batch injection type had the smallest particle size fraction of particulate matter larger than 10 ㎛. The overall particulate matter decreased as the operating load factor decreased from 100% to 60% at the batch input type D plant. In addition, as incomplete combustion significantly decreased, the particle size fraction also changed significantly. Both TSP and heavy metals (six items) satisfied the emissions standards. The measured value of the emission factor was 38-99% smaller than the existing emissions factor. Conclusions: In the batch injection facility, the particulate matter decreased as the operating load factor decreased, as did the particle size fraction of the particulate matter. These results will help the selection of effective methods such as reducing the operating load factor instead of adjusting the operating time during emergency reduction measures.

선박배출 배기냉각과 흡수식이 결합된 하이브리드 시스템을 통한 물 회수 및 미세먼지 저감을 위한 기초실험연구 (Preliminary Experimental Study for Water Recovery and Particulate Matter Reduction through a Hybrid System that Combines Exhaust Cooling and Absorption from Ships)

  • 김영민;신동길;류영현
    • 해양환경안전학회지
    • /
    • 제28권7호
    • /
    • pp.1252-1258
    • /
    • 2022
  • 선박용 엔진에서 배출되는 배기가스에는 다량의 수분과 미세먼지를 포함하고 있다. 미세먼지에는 여과성 미세먼지와 배기 배출 후 액상으로 변화하는 응축성 미세먼지가 포함되어 있으며 배출 전에 걸러지는 고체상 미세먼지보다 응축성 미세먼지가 더 많은 것으로 보고되고 있다. 본 연구에서는 배기가스의 배기열과 수분을 회수하고 응축성 미세먼지를 제거하기 위한 실험장치를 실험실 내의 가스보일러 배기가스를 이용하여 테스트 하였다. 배기가스는 1차적으로 냉각방식으로 수분과 응축성 미세먼지가 제거되고 2차적으로 흡수제 방식에 의해 추가적으로 수분이 제거되었다. 상대습도 측정에 의한 배기가스 수분 제거율을 계산하면 1단계 배기냉각 방식으로 73%, 2단계 흡수제 방식으로 90% 제거되는 것으로 측정되었다. 이 과정에서 응축성 미세먼지는 80~90% 제거되는 것으로 측정되었다. 개발 시스템에 의해 회수된 열은 공정열로 활용할 수 있으며, 회수된 물은 수처리 과정을 통해 공정수로 활용할 수 있다. 또한 현재 관리 규제가 되고 있지 않지만 미세먼지의 주요 원인인 응축성 미세먼지를 효과적으로 제거할 수 있을 것으로 기대된다.

석탄 연소 시 배출되는 응축성 미세먼지의 유기 성분 (Organic Compounds in Condensable Particulate Matter Emitted from Coal Combustion)

  • 박진;이상섭
    • 청정기술
    • /
    • 제29권4호
    • /
    • pp.279-287
    • /
    • 2023
  • 석탄 연소 시 배출되는 미세먼지는 여과성 미세먼지(FPM)와 응축성 미세먼지(CPM)로 구분된다. CPM은 기존의 대기방지시설로 제어가 어려워 CPM의 특성을 파악하기 위한 연구가 진행되고 있다. 응축성 미세먼지(CPM)를 구성하는 성분은 크게 무기성분과 유기성분으로 나눌 수 있다. CPM의 무기성분 중에서 상당한 비율을 차지하는 이온성분에 대해서는 많은 정량분석 결과가 나와 있으나, 유기성분에 대해서는 알려진 바가 적다. 특히 유기성분에 대한 정량분석의 결과가 필요한 상황이다. 본 연구에서는 실험실 규모 석탄 연소로에서 배출되는 CPM의 유기성분 중 방향족 탄화수소(toluene, ethyl benzene, m,p-xylene, o-xylene)와 탄소 수 10부터 30까지의 n-alkane을 정량분석하였다. 실험 결과 방향족 탄화수소 중에서는 toluene이 CPM 유기성분의 1.03%를 차지하여 가장 높았다. 그러나 ethyl benzene, m,p-xylene, o-xylene이 차지하는 함량은 각각 평균 0.11%, 0.18%, 0.51%로 낮은 값을 나타내었다. 반면에 n-alkane 중에서는 triacontane(C30)이 2.64%, decane(C10)이 2.05%로 높은 함량을 보여주었다. 다음으로 dodecane(C12), tetradecane(C14), heptacosane(C27)의 순으로 함량이 높았는데, 이는 toluene 보다 높은 수준이었다. 농도가 검출된 n-alkane 물질들은 tetracosane(C24)만 제외하고 ethyl benzene, m,p-xylene, o-xylene보다 높은 함량을 보였다.

배출가스 중 응축성미세먼지 특성 연구 (A Study on the Characteristics of Condensable Fine Particles in Flue Gas)

  • 공부주;김종현;김혜리;이상보;김형천;조정화;김정훈;강대일;박정민;홍지형
    • 한국대기환경학회지
    • /
    • 제32권5호
    • /
    • pp.501-512
    • /
    • 2016
  • The study evaluated methods to measure condensable fine particles in flue gases and measured particulate matter by fuel and material to get precise concentrations and quantities. As a result of the method evaluation, it is required to improve test methods for measuring Condensable Particulate Matter (CPM) emitted after the conventional Filterable Particulate Matter (FPM) measurement process. Relative Standard Deviation (RSD) based on the evaluated analysis process showed that RSD percentages of FPM and CPM were around 27.0~139.5%. As errors in the process of CPM measurement and analysis can be caused while separating and dehydrating organic and inorganic materials from condensed liquid samples, transporting samples, and titrating ammonium hydroxide in the sample, it is required to comply with the exact test procedures. As for characteristics of FPM and CPM concentrations, CPM had about 1.6~63 times higher concentrations than FPM, and CPM caused huge increase in PM mass concentrations. Also, emission concentrations and quantities varied according to the characteristics of each fuel, the size of emitting facilities, operational conditions of emitters, etc. PM in the flue gases mostly consisted of CPM (61~99%), and the result of organic/inorganic component analysis revealed that organic dusts accounted for 30~88%. High-efficiency prevention facilities also had high concentrations of CPM due to large amounts of $NO_x$, and the more fuels, the more inorganic dusts. As a result of comparison between emission coefficients by fuel and the EPA AP-42, FPM had lower result values compared to that in the US materials, and CPM had higher values than FPM. For the emission coefficients of the total PM (FPM+CPM) by industry, that of thermal power stations (bituminous coal) was 71.64 g/ton, and cement manufacturing facility (blended fuels) 18.90 g/ton. In order to estimate emission quantities and coefficients proper to the circumstances of air pollutant-emitting facilities in Korea, measurement data need to be calculated in stages by facility condition according to the CPM measurement method in the study. About 80% of PM in flue gases are CPM, and a half of which are organic dusts that are mostly unknown yet. For effective management and control of PM in flue gases, it is necessary to identify the current conditions through quantitative and qualitative analysis of harmful organic substances, and have more interest in and conduct studies on unknown materials' measurements and behaviors.