• 제목/요약/키워드: Filter model

검색결과 2,263건 처리시간 0.033초

Kalman Filter 이론에 의한 하천유역의 선형저수지 모델 (A Linear Reservoir Model with Kslman Filter in River Basin)

  • 이영화
    • 한국환경과학회지
    • /
    • 제3권4호
    • /
    • pp.349-356
    • /
    • 1994
  • The purpose of this study is to develop a linear reservoir model with Kalman filter using Kalman filter theory which removes a physical uncertainty of :ainfall-runoff process. A linear reservoir model, which is the basic model of Kalman filter, is used to calculate runoff from rainfall in river basin. A linear reservoir model with Kalman filter is composed of a state-space model using a system model and a observation model. The state-vector of system model in linear. The average value of the ordinate of IUH for a linear reservoir model with Kalman filter is used as the initial value of state-vector. A .linear reservoir model with Kalman filter shows better results than those by linear reserevoir model, and decreases a physical uncertainty of rainfall-runoff process in river basin.

  • PDF

Federated Information Mode-Matched Filters in ACC Environment

  • Kim Yong-Shik;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.173-182
    • /
    • 2005
  • In this paper, a target tracking algorithm for tracking maneuvering vehicles is presented. The overall algorithm belongs to the category of an interacting multiple-model (IMM) algorithm used to detect multiple targets using fused information from multiple sensors. First, two kinematic models are derived: a constant velocity model for linear motions, and a constant-speed turn model for curvilinear motions. Fpr the constant-speed turn model, a nonlinear information filter is used in place of the extended Kalman filter. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. The model-matched filter used in multi-sensor environments takes the form of a federated nonlinear information filter. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. In this paper, the structural features and information sharing principle of the federated information filter are discussed. The performance of the suggested algorithm using a Monte Carlo simulation under the two patterns is evaluated.

STATE MODEL BASED OPTIMAL FIR 필터의 성능분석 (Performance Analysis of the state model based optimal FIR filter)

  • 이규승;권욱현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.917-920
    • /
    • 1988
  • The effects of the errors due to incorrect a priori informations on the noise model as well as the system model in the continuous state model based optimal FIR filter is considered. When the optimal filter is perturbed, the error covariance is derived. From this equation, the performance of the state model based optimal FIR filter is analyzed for the given modeling error. Also the state model based optimal FIR filter is compared to the standard Kalman filter by an example.

  • PDF

Rao-Blackwellized Multiple Model Particle Filter자료융합 알고리즘 (Rao-Blackwellized Multiple Model Particle Filter Data Fusion algorithm)

  • 김도형
    • 한국항행학회논문지
    • /
    • 제15권4호
    • /
    • pp.556-561
    • /
    • 2011
  • 일반적으로 비선형 시스템에서 particle filter가 Kalman Filter보다 표적추적 성능이 뛰어나다고 알려져 있다. 그러나 particle filter는 많은 연산량을 요구하는 단점이 있다. 본 논문에서는 particle filter 보다 적은 particle의 수, 즉 적은 연산량으로 동일한 성능을 가지는 Rao-Blackwellized particle filter의 모델의 민감성을 줄인 Rao-Blackwellized Multiple Model Particle Filter(RBMMPF)의 알고리즘을 소개하고 이에 다중센서 정보를 융합하는 자료융합 기법을 적용하였다. 시뮬레이션을 통해 단일센서 정보를 이용한 RBMMPF 표적추적 성능과 다중센서정보를 융합한 RBMMPF의 표적추적 성능을 비교, 분석하였다.

Model based optimal FIR synthesis filter for a nosy filter bank system

  • Lee, Hyun-Beom;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.413-418
    • /
    • 2003
  • In this paper, a new multirate optimal finite impulse response (FIR) filter is proposed for the signal reconstruction in the nosy filter bank systems. The multirate optimal FIR filter replaces the conventional synthesis filters and the Kalman synthesis filter. First, the generic linear model is derived from the multirate state space model for an autoregressive (AR)input signal. Second, the multirate optimal FIR filter is derived from the multirate generic linear model using the minimum variance criterion. This paper also provides numerical examples and results. The simulation results illustrate that the performance is improved compared with conventional synthesis filters and the proposed filter has advantages over the Kalman synthesis filter.

  • PDF

해상환경용 EM-Log 보정항법 필터 설계 (A EM-Log Aided Navigation Filter Design for Maritime Environment)

  • 조민수
    • 한국항행학회논문지
    • /
    • 제24권3호
    • /
    • pp.198-204
    • /
    • 2020
  • 본 논문에서는 GNSS (global navigation satellite system)이 가용하지 않는 상황에서 시간이 지남에 따라 오차가 누적되는 특성을 가진 관성항법장치(inertial navigation system)의 항법 오차를 보상하기 위한 EM-Log (electromagnetic-log) 보정항법 필터를 설계하였다. EM-Log는 해상에서 운동체의 이동 속도를 측정하여 속도 오차를 보정하여 주나 측정된 속도에는 해조류가 포함되어 있기 때문에 적절한 해조류 모델 설계와 추정이 필요하다. 본 논문에서는 해조류 추정을 위해 단일 모델 필터와 IMM (interacting multiple model) 모델 필터 방법론을 제시하고 설계된 필터의 해조류 추정 성능을 확인한 후 해조류 모델 설계가 필터 성능에 어떤 영향을 주는지 분석하였다. 설계된 보정항법 필터의 성능은 시뮬레이션을 이용하여 검증하고 순수항법 대비 필터 성능 향상률을 비교 분석하였다. 단일 모델 필터는 해조류 모델이 동일한 경우 성능이 좋지만 해조류 모델이 동일하지 않을 경우 성능이 저하되는 것을 확인 할 수 있었다. 반면, IMM 모델 필터의 경우 다양한 해조류 모델을 사용하기 때문에 단일 모델필터 대비 안정적인 성능을 유지하는 것을 확인하였다.

Maneuvering Target Tracking Using Multiresolutional Interacting Multiple Model Filter

  • Yu, C,H.;Choi, J.W.;Song, T.L.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2340-2344
    • /
    • 2003
  • This paper considers a tracking filter algorithm which can track a maneuvering target. Multiresolutional Interacting Multiple Model (MRIMM) algorithm is proposed to reduce computational burden. In this paper multiresolutional state space model equation and multiresolutional measurement equation are derived by using wavelet transform. This paper shows the outline of MRIMM algorithm. Simulation results show that MRIMM algorithm maintains a good tracking performance and reduces computational burden.

  • PDF

모델 전이 기법을 이용한 기압고도계의 오차 추정 (Estimation of baro-altimeter errors via model transition technique)

  • 황익호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.32-35
    • /
    • 1996
  • In this paper, it is shown that the dominant errors of baro-altimeters can be characterized by bias and scale factor errors. Also an optimal filter for estimating both bias and scale factor is derived based on the concept of model transition. The optimal filter is, however, not realizable because the model transition hypotheses increase exponentially. Therefore a realizable suboptimal filter using the interacting multiple model(IMM) technique is proposed. Computer simulation results show that the estimation errors of the proposed filter are smaller than those of the conventional least squares algorithm with a forgetting factor when both the bias and the scale factor are varying.

  • PDF

강인 H₂필터를 이용한 속도정합 알고리즘 (Velocity Matching Algorithm Using Robust H₂Filter)

  • 양철관;심덕선;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.363-363
    • /
    • 2001
  • We study on the velocity matching algorithm for transfer alignment of inertial navigation system(INS) using a robust H₂ filter. We suggest an uncertainty model and a discrete robust H₂filter for INS and apply the suggested robust H₂ filter to the uncertainty model. The discrete robust H₂filter is shown by simulation to have better performance time and accuracy than Kalman filter.

유사량산정을 위한 Kalman filter를 이용한 탱크모델 (Tank Model using Kalman Filter for Sediment Yield)

  • 이영화
    • 한국환경과학회지
    • /
    • 제16권12호
    • /
    • pp.1319-1324
    • /
    • 2007
  • A tank model in conjunction with Kalman filter is developed for prediction of sediment yield from an upland watershed in Northwestern Mississippi. The state vector of the system model represents the parameters of the tank model. The initial values of the state vector were estimated by trial and error. The sediment yield of each tank is computed by multiplying the total sediment yield by the sediment yield coefficient. The sediment concentration of the first tank is computed from its storage and the sediment concentration distribution(SCD); the sediment concentration of the next lower tank is obtained by its storage and the sediment infiltration of the upper tank; and so on. The sediment yield computed by the tank model using Kalman filter was in good agreement with the observed sediment yield and was more accurate than the sediment yield computed by the tank model.