• Title/Summary/Keyword: Filmbox

Search Result 4, Processing Time 0.017 seconds

Unveiling Zoological Realms: Exploring the Virtual Frontier, Analyzing Data Export Techniques, and Crafting Immersive Experiences

  • Jumamurod Aralov Farhod Ugli;Narzulloev Oybek Mirzaevich;Leehwan Hwang;Seunghyun Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.242-252
    • /
    • 2024
  • This study introduces a prototype for a virtual zoo initiative, aimed at optimizing resource utilization and minimizing animal displacement from their natural habitats. The prototype features a thoughtfully developed three-dimensional representation of an emperor penguin, with animations designed to emulate real-life behaviors. An investigation into file format distinctions for scientific research, encompassing Wavefront(OBJ), Collada(DAE), and Filmbox(FBX) formats, was conducted. The research utilized the Hololens 2 device for visualization, Unity for environment development, Blender for modeling, and C# for programming, with deployment facilitated through Visual Studio 2019 and the Mixed Reality Toolkit. Empirical examination revealed the OBJ format's suitability for simple geometric shapes, while DAE and FBX formats were preferred for intricate models and animations. DAE files offer detailed preservation of object structure and animations albeit with larger file sizes, whereas FBX files provide compactness but may face scalability constraints due to extensive data integration. This investigation underscores the potential of virtual zoos for conservation and education, advocating for further exploration and context-specific implementation.

A Study on the Performance Comparison of 3D File Formats on the Web

  • Lee, Geon-hee;Choi, Pyeong-ho;Nam, Jeong-hwan;Han, Hwa-seop;Lee, Seung-hyun;Kwon, Soon-chul
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.65-74
    • /
    • 2019
  • 3D file formats typically include OBJ (Wavefront file format), STL (STereoLithography), and FBX (Filmbox). Each format has limitations depending on its configuration and usage, and supported formats are different depending on the software application. glTF helps uniform integration of 3D file formats and allows for more efficient transmission of large 3D geometry files by organizing them in a binary format. This paper presents explanation on OBJ, FBX, and STL which are major examples of existing 3D file formats. It also explains the concept and characteristics of glTF and compares its performance with other 3D file formats on the web. The loading time and packets of each 3D file format are measured according to the web browser environment by means of Google Chrome, Firefox and Microsoft Edge. Experimental results show that glTF is the most efficient and that it exhibits the best performance. As to STL, relatively excessive traffic was observed. This study is expected to contribute to reducing rendering time on the web as 3D file formats are used.

Performance Comparison of 3D File Formats on a Mobile Web Browser

  • Nam, Duckkyoun;Lee, Daehyeon;Lee, Seunghyun;Kwon, Soonchul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.31-42
    • /
    • 2019
  • As smartphone H/W performance and mobile communication service have been enhanced, large-capacity 3D modeling files are available in smartphones. Common formats of 3D modeling files include STL (STereoLithography), OBJ (Wavefront file format specification), FBX (Filmbox), and glTF (open GL Transmission Format). Each format has different characteristics depending on the configuration and functions, and formats that are supported are varied depending on the applications. Large-size files are commonly used. The 4th generation mobile communication network secures loading of 3D modeling files and transmission of large-size geometric files in order to provide augmented reality services via smartphones. This paper explains the concepts and characteristics of major 3D file formats such as OBJ, FBX, and glTF. In addition, it compares their performance in a wired web with that in the 4th generation mobile communication network. The loading time and packet transmission in each 3D format are also measured by means of different mobile web browsers (Google Chrome and MS Edge). The experiment result shows that glTF demonstrated the most efficient performance while the loading time of OBJ was relatively excessive. Findings of this study can be utilized in selecting specific 3D file formats for rendering time reduction depending on the mobile web environments.

Implementation of 3D Animation using 3D Graphic SW(Blender) based on STL Files (3D 그래픽 SW(Blender)를 활용한 STL파일 기반의 3D 애니메이션 제작)

  • Kim, Jong-Jin;Kim, Jong-Seong
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.710-721
    • /
    • 2018
  • In this study, we have suggested a method to create 3D animation based on STL files which are easily available on the internet using Blender, which is one of the most popular open-source 3D modeling SW. And the procedure of making 3D animation using STL file was compared with those for OBJ or FBX files as well. Contrary to OBJ and FBX, STL files do not contain information regarding hierarchy, material and texture which are very important in making 3D animation. Especially the absence of hierarchy may cause serious problems in rigging, which involves movement of unwanted parts of 3D object during rigging process. It is demonstrated that the weight painting feature of Blender could be a solution to tackle the faulty rigging due to attributes of STL files. The effect of the sampling frequency and the resolution on the rendering time is also investigated with respect to the 3D mantis animation. It is also seen that insect models by 3D printer could be used as a new type of pedagogical material in the elementary science education.