• Title/Summary/Keyword: Film holes

Search Result 185, Processing Time 0.022 seconds

Effects of Compound Angle, Diffuser Angle, and Hole Pitch on Film-cooling Effectiveness (막냉각 홀의 측면 방향 분사각, 확장각 및 주기가 막냉각 효율에 미치는 영향)

  • Kim, Sun-Min;Lee, Ki-Don;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.903-913
    • /
    • 2011
  • A numerical study is carried out to analyze the steady three-dimensional turbulent flow through cylindrical and fan-shaped holes and the film cooling of these holes at low and high blowing ratios. Compressible Reynoldsaveraged Navier-Stokes equations and the energy equation are solved using a finite-volume-based solver, and a shearstress transport model is used as the turbulence closure. The effects of the compound angle, pitch to diameter ratio, and lateral expansion angle of the hole on the film-cooling effectiveness are evaluated by the film-cooling effectiveness. It is observed that the compound angle of the hole enhances the film performance for the cylindrical hole, and a small hole pitch induces interactions between the coolants from the adjacent holes, thus reducing the film-cooling performance.

Film Cooling from Two Rows of Holes with Opposite Orientation Angles(I) -Configuration Effect- (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성(I) -배열의 영향-)

  • Ahn, Joon;Jung, In-Sung;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1122-1130
    • /
    • 2001
  • Film cooling performance from two rows of holes with opposite orientation angles is evaluated in terms of heat flux ratio. The film cooling hole has a fixed inclination angle of 35°and orientation angle of 45°for the downstream row and -45°for the upstream row. Four film cooling hole arrangements including inline and staggered configurations are investigated. The blowing ratio studied was 1.0. Boundary layer temperature distributions are measured to investigate injectant behaviors and mixing characteristics. Detailed distributions of the adiabatic film cooling effectiveness and the heat transfer coefficient are measured using TLC(Thermochromic Liquid Crystal). For the inline configuration, there forms a downwash flow at the downstream hole exit to make the injectant well attach to the wall, which gives high adiabatic film cooling effectiveness and heat transfer coefficient. The evaluation of heat flux ratio shows that the inline configuration gives better film cooling performance with the help of the downwash flow at the downstream hole exits.

Film Cooling from Two Rows of Holes with Opposite Orientation Angles(II) -Blowing Ratio Effect- (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성(II) -분사비의 영향-)

  • Ahn, Joon;Jung, In-Sung;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1131-1139
    • /
    • 2001
  • Experimental results are presented, which describe the effect of blowing ratio on film cooling from two rows of holes with opposite orientation angles. The inclination angle is fixed at 35°, and the orientation angles are set to be 45°for the downstream row, and -45°for the upstream row. The studied blowing ratios are 0.5, 1.0 and 2.0. The boundary layer temperature distributions are measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions are measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux is evaluated from the adiabatic film cooling effectiveness and heat transfer coefficient data. The results show that the investigated geometry provides improved film cooling performance at the high blowing ratios of 1.0 and 2.0.

The Characteristics of Silk Sericin/polyurethane Mixed Film (견 세리신/폴리우레탄 혼합필름의 특성)

  • 김문정;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.2
    • /
    • pp.143-149
    • /
    • 1998
  • For the application of silk sericin, silk sericin powders were prepared by various spray dry conditions and the characteristics of silk sericin/polyurethane mixed films were investigated. When the sericin was dried from the solution at higher inlet and outlet temperature, larger sizes of the powder particles were obtained. It was also found that inlet and outlet temperatures were important factors affecting the shape and surface characteristics of sericin power particle. The many holes and empty spaces were observed at the surface and cross section of sericin/PU mixed film. With the increase of the amount of sericin powder in the mixed films, the size and number of holes and empty spaces were increased. The thickness of sericin/PU mixed film was increased with the content of sericin powder. As the portion of sericin powder increase, the tenacity is decreased while the elongation slightly increased.

  • PDF

A Study on the Film-cooling Characteristics of Gas Turbine Blade with Various Area Ratios and Ejection Angles of the Double Jet Holes (이중분사 홀의 면적비와 분사각 변화에 따른 가스터빈 막냉각 특성 연구)

  • Cho, Moon-Young;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2014
  • The kidney vortex is the important factor adversely influencing film cooling effectiveness. In general, double jet film-cooling hole is designed to overcome the kidney vortex by generating anti-kidney vortices. In this study, the film cooling characteristics and the effectiveness of the double jet film cooling hole were numerically investigated with various area ratios of the first($A_1$) and second($A_2$) cooling hole($A_1/A_2$=0.8, 1.0, 1.25) and lateral ejection angle(${\alpha}$ = $30^{\circ}$, $45^{\circ}$, $60^{\circ}$) as the design parameters. The effects of lateral distance between the first and second row holes are investigated. Numerical study was performed by using ANSYS CFX with the shear stress transport(SST) turbulence model. The film cooling effectiveness and temperature distribution were graphically depicted with various flow and geometrical conditions.

Film Cooling from Two Rows of Holes with Opposite Orientation Angles: Blowing Ratio Effects (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성 : 분사비의 영향)

  • Ahn, J.;Jung, I.S.;Lee, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.113-118
    • /
    • 2000
  • Experimental results describing the effects of blowing ratio on film cooling from two rows of holes with opposite orientation angles are presented. The inclination angle was fixed at $35^{\circ}$ and the orientation angles were set to be $45^{\circ}$ for downstream row. and $-45^{\circ}$ for upsream row. The studied blowing ratios were 0.5, 1.0 and 2.0. The boundary layer temperature distributions were measured using thermocouple at two downstream loundary layer temperature distributions were measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions were measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux was calculated with the adiabatic film cooling effectiveness and heat transfer coefficient data.

  • PDF

Effect of Mainstream Turbulence Intensitv on Dimensionless Temperature Downstream of Staggered Rows of Recangular Hole (주유동의 난류강도가 엇갈린 배열의 사각홀 하류에서의 온도장 분포에 미치는 영향)

  • Kim, Young-Bong;Lee, Dong-Ho;Oh, Min-Guen;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.181-186
    • /
    • 2003
  • An experimental study has been conducted to measure the temperature fields for two and three staggered rows of the rectangular shaped-holes with high turbulence intensity. 10 % turbulence intensity is obtained by installation of two kinds of grids which have different shapes. One grid which is installed at 30d upstream from center of 1st row of holes is composed of vertical cylinders of which diameter is 10 mm and center to center distance is 18 mm. The other installed 15d apart to upstream from center of 1st row of holes which has square pattern is constructed of 3 rum square bars and bar spacing is 25 mm. Temperature fields are measured by using a thermocouple rake which is attached on three-axis traversing system. The results show that the overall values are decreased and the thicker film of coolant is fanned downstream of rows of holes for high mainstream turbulence intensity.

  • PDF

Flow and Heat Transfer Measurements of Film Injectant from a Row of Holes with Compound Angle Orientations

  • Bumsoo Han;Sohn, Dong-Kee;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1137-1146
    • /
    • 2002
  • An experiment has been conducted on the flow and heat transfer characteristics of film coolant injected from a row of five holes with compound angle orientations of 35$^{\circ}$ inclination angle and 45$^{\circ}$ orientation angle. The Reynolds number based on the mainstream velocity and injection hole diameter 3.58${\times}$10$^4$. Three-dimensional velocity, film cooling effectiveness and heat transfer coefficient data are presented at three different mass flux ratios of 0.5, 1.0 and 2.0. Flow entrainment has been found between the vortices generated by adjacent injectants. The injectant with compound angle orientation entrains not only the mainstream boundary layer flow but also the adjacent injectant. Because of the flow entrainment, the injectant. With compound angle orientation is characterized by a single vortex while two bound vortices are usually observed in the case of simple angle injection. The strength of the secondary flow depends strongly on the mass flux ratio, which shows significant influence on the film cooling effectiveness and heat transfer coefficient.

Patterning of Diamond Micro-Columns

  • Cho, Hun-Suk;Baik, Young-Joon;Chung, Bo-Keon;Lee, Ju-Yong;Jeon, D.;So, Dae-Hwa
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.34-36
    • /
    • 1997
  • We have fabricated a patterned diamond field emitter on a silicon substrate. Fine diamond particles were planted on a silicon wafer using conventional scratch method. A silicon oxide film was deposited on the substrate seeded with diamond powder. An array of holes was patterned on the silicon oxide film using VLSI processing technology. Diamond grains were grown using a microwave plasma-assisted chemical vapor deposition. Because diamond could not grow on the silicon oxide barrier, diamond grains filled only the patterned holes in the silicon oxide film, resulting in an array of diamond tips.

  • PDF

Design Optimization of Fan-shaped Film Cooling Hole Array on Pressure Side Surface of High Pressure Turbine Nozzle (고압터빈 노즐 압력면에서의 확장 형상 막냉각 홀 배열 최적설계)

  • Lee, Sanga;Rhee, Dong-Ho;Kang, Young-Seok;Kim, Jinuk;Seo, Do-Young;Yee, Kwanjung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.52-58
    • /
    • 2014
  • In the present work, design optimization of film-cooling hole array on the pressure side of high pressure turbine nozzle was conducted. There are four rows of fan-shaped film cooling holes on the nozzle pressure side surface and each row has a straight array of holes in the spanwise direction for baseline model. For design optimization, hole distributions in streamwise and spanwise directions for three rows of holes except first row are parameterized as a 2nd-order shape function. Three-dimensional compressible RANS equations are used for flow and thermal analysis around the nozzle surface and optimization technique using Design of Experiment, Kriging surrogate model and Genetic Algorithm is used. The results shows that averaged adiabatic wall temperature at the whole nozzle surface decreases about 2.7% and averaged film cooling effectiveness at the pressure side of nozzle increased about 8.2%.