• Title/Summary/Keyword: Film holes

Search Result 185, Processing Time 0.031 seconds

Effects of Imidisation for Poly(Amic Acid) Films on Gas Transport (Polyamic Acid막의 Imide화가 산소, 질소투과에 미치는 영향)

  • 김남일;홍치선;조한석;남세종
    • Membrane Journal
    • /
    • v.3 no.2
    • /
    • pp.60-69
    • /
    • 1993
  • The polyamic acid (PAA) based on 3,3', 4,4'-benzophenonetetracarboxylic dianhydride(BTDA)-3,3', 4,4'-dipheylsulfonetetracarboxylic dianhydride(BAPP), 2,2-bis(4-[4-aminophenoxyl]phenyl) propane(DSDA)-3,3', 4,4'-dipheylsulfonetetracarboxylic dianhydride(BAPP), and 3,3',4,4'-benzophenonetetracarboxylic dianhydride(BTDA)-4,4'-oxydianiline(4,4'-ODA) was synthesised. The casted PAA films were partially imidised and the permeation properties of these PAA films for $O_2$ and $N_2$ were investigated according to the degree of imidisation. When the degree of imidisation was increased by curing, the permeabilities of the PAA films were increased for a while and then decreased. These results show that the increase of gas permeation by the disappearence of strong hydrogen bond is larger than the decrease of gas permeation by the dense effect. The decrease of hydrogen bond between molecular chains of PAA suddenly increases the vibration of the chain to make holes but the compaction in polymer chain gradually decreases the gas permeation. The largest values of permeability of BTDA-BAPP, DSDA-BAPP and BTDA-4,4'-ODA film was 8.3, 0.3 and 0.8 barrer respectively, and the imidisation content corresponding to the values of the largest permeability was 37, 47 and 55% each. But the permselctivities of the PAA films were not changed by the variation of the degree of imidisation.

  • PDF

Atomic Layer Deposition for Energy Devices and Environmental Catalysts

  • Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.77.2-77.2
    • /
    • 2013
  • In this talk, I will briefly review recent results of my group related to application of atomic layer deposition (ALD) for fabricating environmental catalysts and organic solar cells. ALD was used for preparing thin films of TiO2 and NiO on mesporous silica with a mean pore size of 15 nm. Upon depositing TiO2 thin films of TiO2 using ALD, the mesoporous structure of the silica substrate was preserved to some extent. We show that efficiency for removing toluene by adsorption and catalytic oxidation is dependent of mean thickness of TiO2 deposited on silica, i.e., fine tuning of the thickness of thin film using ALD can be beneficial for preparing high-performing adsorbents and oxidation catalysts of volatile organic compound. NiO/silica system prepared by ALD was used for catalysts of chemical conversion of CO2. Here, NiO nanoparticles are well dispersed on silica and confiend in the pore, showing high catalytic activity and stability at 800oC for CO2 reforming of methane reaction. We also used ALD for surface modulation of buffer layers of organic solar cell. TiO2 and ZnO thin films were deposited on wet-chemically prepared ZnO ripple structures, and thin films with mean thickness of ~2 nm showed highest power conversion efficiency of organic solar cell. Moreover, performance of ALD-prepared organic solar cells were shown to be more stable than those without ALD. Thin films of oxides deposited on ZnO ripple buffer layer could heal defect sites of ZnO, which can act as recombination center of electrons and holes.

  • PDF

A New Strategy to Fabricate a Colloidal Array Templated $TiO_2$ Photoelectrode for Dye-sensitized Solar Cells

  • Lee, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.8.1-8.1
    • /
    • 2011
  • Nanocrystalline titanium dioxide ($TiO_2$) materials have been widely used as an electron collector in DSSC. This is required to have an extremely high porosity and surface area such that the dye can be sufficiently adsorbed and be electronically interconnected, resulting in the generation of a high photocurrent within cells. In particular, their geometrical structures and crystalline phase have been extensively investigated as important issues in improving its photovoltaic efficiency. In this study, we present a new strategy to fabricate a photoelectrode having a periodic structured $TiO_2$ film templated from 1D or 3D polystyrene (PS) microspheres array. Monodisperse PS spheres of various radiuses were used for colloidal array on FTO glasses and two types of photoelectrode structures with different $TiO_2$ materials were investigated respectively. One is the igloo-shaped electrode prepared by $TiO_2$ deposition by RF-sputtering onto 2D microsphere-templated substrates. At the interface between the film and substrate, there are voids formed by the decomposition of PS microspheres during the calcination step. These holes might be expected to play the predominant roles as scattering spherical voids to promote a light harvesting effect, a spacious structure for electrolytes with higher viscosity and effective paths for electron transfer. Additionally the nanocrystalline $TiO_2$ phase prepared by the RF-sputtering method was previously reported to improve the electron drift mobility within $TiO_2$ electrodes. This yields solar cells with a cell efficiency of 2.45% or more at AM 1.5 illumination, which is a very remarkable result, considering its $TiO_2$ electrode thickness (<2 ${\mu}m$). This study can be expanded to obtain higher cell efficiency by higher dye loading through the increase of surface area or multi-layered stacking. The other is the inverse opal photonic crystal electrode prepared by titania particles infusion within 3D colloidal arrays. To obtain the enlargement of ordered area and high quality of crystallinity, the synthesis of titania particles coated with a organic thin layer were applied instead of sol-gel process using the $TiO_2$ precursors. They were dispersed so well in most solvents without aggregates and infused successfully within colloidal array structures. This ordered mesoporous structure provides the large surface area leading to the enough adsorption of dye molecules and have an light harvesting effect due to the photonic band gap properties (back-and-forth reflection effects within structures). A major advantage of this colloidal array template method is that the pore size and its distribution within $TiO_2$ photoelectrodes are determined by those of latex beads, which can be controlled easily. These materials may have promising potentials for future applications of membrane, sensor and so on as well as solar cells.

  • PDF

The Properties of Hole Injection and Transport Layers on Polymer Light Emitting Diode (정공 주입층 및 수송층에 따른 고분자 유기발광다이오드의 특성 연구)

  • Shin, Sang-Baie;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.37-42
    • /
    • 2007
  • We fabricated the polymer light emitting diodes (PLEDs) with ITO/PEDOT:PSS/PVK/PFO:MEH-PPV/LiF/Al structures. The effect of the thickness of PEDOT:PSS hole injection layer(HIL) on the electrical and optical properties of PLEDs was investigated. In addition, PVK hole transport layer(HTL) was introduced in the PLED device, and compared the properties of the PLEDS with and without PVX layer. All organic film layers were prepared by the spin coating method on the plasma treated ITO/glass substrates. As the thickness of PEDOT:PSS film layer decreased from about 80 nm to 50 nm, the luminance of PLED device increased from $220cd/m^2$에서 $450cd/m^2$. This may be ascribed to the increased transportation efficiency of the holes into the emission layer of PLED. The maximum current density and luminance were obtained fir the PLED device with PVX hole transport layer, showing that the current density and luminance were $268mA/cm^2\;and\;540cd/m^2$ at 12V, respectively. This values were improved by about 14% and 22% in current density and luminance compared with the PLED device without PVK layer.

  • PDF

Fabrication of Nanopatterned Oxide Layer on GaAs Substrate by using Block Copolymer and Reactive Ion Etching (블록 공중합체와 반응성 이온식각을 이용한 GaAs 기판상의 나노패터닝된 산화막 형성)

  • Kang, Gil-Bum;Kwon, Soon-Mook;Kim, Seoung-Il;Kim, Yong-Tae;Park, Jung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.29-32
    • /
    • 2009
  • Dense and periodic arrays of nano-sized holes were patterned in oxide thin film on GaAs substrate. To obtain the nano-size patterns, self-assembling diblock copolymer was used to produce thin film of uniformly distributed parallel cylinders of polymethylmethacrylate (PMMA) in polystyrene (PS) matrix. The PMMA cylinders were removed with UV expose and acetic acid rinse to produce PS nanotemplate. By reactive ion etching, pattern of the PS template was transferred to under laid silicon oxide layer. Transferred patterns were reached to the GaAs substrate by controlling the dry etching time. We confirmed the achievement of etching through the removing oxide layer and observation of GaAs substrate surface. Optimized etching time was 90 to 100 sec. Pore sizes of the nanopattern in the silicon oxide layer were 20~22 nm.

  • PDF

Application of Modified Mupit for the Recurrent Vulva Cancer in Brachytherapy

  • Kim, Jong-Sik;Jung, Chun-Young;Oh, Dong-Gyoon;Song, Ki-Won;Park, Young-Hwan
    • 대한방사선치료학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.23-26
    • /
    • 2005
  • Introduction: To evaluate whether modified MUPIT applicator can effectively eradicate recurrent tumor in uterine cervix cancer and reduce rectal complication after complete radiation treatment. Methods and Materials: Modified MUPIT applicator basically consists of an acrylic cylinder with flexible brain applicator , an acrylic template with a predrilled array of holes that serve as guides for interstitial needles and interstitial needles. CT scan was performed to determine tumor volume and the position of interstitial needles. Modified MUPIT applicator was applied to patient in operation room and the accuracy for position of interstitial needles in tumor volume was confirmed by CTscan. Brachytherapy was delivered using modified MUPIT applicator and RALS (192-Ir HDR) after calculated computer planning by orthogonal film. The daily dose was 600cGy and the total dose was delivered 3000cGy in tumor volume by BID. Rectal dose was measured by TLD at 5 points so that evaluated the risk of rectal complication. Result: The application of modified MUPIT applicator improved dramatically dose distributions in tumor volume and follow-up of 3 month for this patient was clinically partial response without normal tissue complication, Rectal dose was measured 34.1cGy, 57.1cGy, 103.8cGy, 162.7cGy, 165.7cGy at each points, especially the rectal dose including previous EBRT and ICR was 34.1cGy, 57.1cGy Conclusion: Patients with locally recurrent tumor in uterine cervix cancer treated with modified MIUPIT applicator can expect reasonable rates of local control. The advantages of the system are the fixed geometry Provided by the template and cylinders, and improved dose distributions in irregular tumor volume without rectal complication

  • PDF

Postharvest Handling and Marketing Management for Making High Salability of Sweetpotatoes (상품성 제고를 위한 고구마 수확 후 관리 및 출하기술)

  • Jeong, Byeong-Choon
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2001.06a
    • /
    • pp.51-64
    • /
    • 2001
  • The qualities including taste of sweetpotato stored during the winter which can display in the spring market in Korea are affected by availability of storage for the roots. In order to make high storage availability of sweetpotato, the postharvest handlings should be done thoroughly from the moment of harvest until shipping them to the market. A lot of procedures that must be handled carefully for improving postharvest management are as follows; digging, trimming, gathering, putting in storage containers, carrying them from field to house, curing, storing, washing, drying, selecting marketable roots, packing and shipping to the market, etc.. Sweetpotatoes have a high moisture content, and a relatively thin and delicate skin, and are sensitive to chilling, so careless postharvest handling can lead to both quantitative and qualitative losses which may be extremely high in some circumstances. From now on research has concentrated on the improvement of postharvest conditions to increase yield and lower disease rates. Storage, which makes sweetpotatoes available through out the year, benefits both the producer and the consumer. Seven very important points must be needed in order to get the best quality marketable roots in the storing of sweetpotatos : $\circled1$The storage house must be clean and sanitary, $\circled2$The crop must be harvested before the first frost to avoid low-temperature injury, $\circled3$Particular care must be taken to avoid cutting, bruising, or other injuries of the sweetpotatoes during digging, picking up, grading, placing in containers, and moving to the storage house, $\circled4$Select sound, disease-free roots for storage $\circled5$Sweetpotatoes should be stored in properly stacked containers $\circled6$Cure immediately after harvest, preferably at 32∼33$^{\circ}C$ and 90 to 95 percent relative humidity for 4 to 7 days, After curing the temperature should be reduced to 13$^{\circ}C$ to 16$^{\circ}C$ by ventilating the storage with outside air. $\circled7$Store at 12$^{\circ}C$ to 14$^{\circ}C$ and a relative humidity of 80 to 85 percent. Storage houses should be located on suitable sites and should be tightly constructed and insulated so that temperature and humidity will be uniform. Sweetpotatoes are usually not washed and graded, and lately sometimes washed, graded, waxed, before being shipped to market. Consumer packaging of sweetpotatoes in paper boxes(10-15kg) or film bags is done mainly to aid marketing. The shelf life of washed roots in consumer packs in only 1 to 2 weeks. Weight loss of roots during marketing is much less in perforated film bags than in mesh and paper bags. Perforation of 0.8 to 1kg polyethylene bags with about six 6mm holes is essential ; to lower the internal relative humidity and avoid excessive sprouting, rooting, and dampness. Development and use of better postharvest handling with good storage facilities or marketing methods can minimize sweetpotate losses and has an effect of indirectly increasing productivity and farmer’s income.

Effect of Drip Irrigation on Soil Salinity Control and Growth of Cabbage at the newly reclaimed tidal lands in Korea (점적관수가 토양염농도 제어와 배추의 생육에 미치는 영향)

  • Sohn, Yong-Man;Jeon, Geon-Yeong;Song, Jae-Do;Lee, Jae-Hwang;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.492-499
    • /
    • 2009
  • Effect of drip irrigation on soil salinity control and growth of vegetable crops was studied in the three reclaimed lands of Korea in 2007. Drip irrigation was done one or two times per month for reduction of salt stress by using vinyl hose with tiny holes laid on ridge surface under black plastic film mulch during growing season of cabbage and chinese cabbage. It was observed that drip irrigation was generally effective to soil salinity control, but soil salinity variation of some place was not fully solved to lower down under level of free salt stress. It is also considered that high salinity of runoff water spilled out from cultivation ridge plays another key role for soil salinity management. Consequentially, this soil salinity variation might be one of factors brought low average yield and low commercial ratio of agricultural products. Relation between soil salinity and head growth of cabbage and chinese cabbage was well expressed as logarithmic function. Surface soil EC to reach at 50% of growth reduction to the heaviest head can be estimated was $6.1dS^{\circ}{\S}m^{-1}$ for cabbage and $5.7dS\;m^{-1}$ for chinese cabbage transplanted at optimum season.

Preparation of a axis oriented $YBa_2Cu_3O_{7-\delta}$ thin films by RF magnetron sputtering (RF 마그네트론 스퍼터링법에 의한 a-축 배향 $YBa_2Cu_3O_{7-\delta}$박막의 제조)

  • Lee, J.J.;Kim, Y.H.;Shin, J.;Lee, K.H.;Choi, S.S.;Hahn, T.S.
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.459-465
    • /
    • 1994
  • A-axis oriened YBCO thin flims were grown on $LaAIO_{3}$ single crystal substrate by off-axis rf magnetron sputtering method. We used two kinds of process to get a-axis oriented fi1ms;one-step process and two-step process. In one-step process, films are grown in single step in which substrate temperature( $T_s$) is in the range of $590^{\circ}C$ to $680^{\circ}C$. On the other hand, in two step process a-axis oriented thin film templates i f about 30nm thickness is deposited at low temperature first, and subsequently films are grown at elevated temperature to the final thickness of about 100nm. In the case of one step process($T_s$ ~)$600^{\circ}C$), prefered a-axis orientation is dominant and Cu-rich phases segregate at the surface. Segregations decrease and ($00 \ell$) peaks increase upon increasing $T_s$. The films prepared by two step method appeared to have strong(h00) peaks as the deposition rate increased. Microstructure shows pin holes resulted from mixed phases of a-axis and c-axis oriented films. In both cases of one step and two step process, as TS decreases, prepared films show stronger a-axis orientation. However electrical properties of the films are depressed with lower $T_c$ and wider $\Delta T$ as $T_s$ decreases.

  • PDF

Self-Diagnosis of Damage in Carbon Fiber Reinforced Composites Using Electrical Residual Resistance Measurement (잉여 전기 저항 측정을 이용한 탄소 섬유 강화 복합재의 파손 측정)

  • Kang, Ji-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.323-330
    • /
    • 2009
  • The objective of this research was to develop a practical integrated approach using extracted features from electrical resistance measurements and coupled electromechanical models of damage, for in-situ damage detection and sensing in carbon fiber reinforced plastic(CFRP) composites. To achieve this objective, we introduced specific known damage (in terms of type, size, and location) into CFRP laminates and established quantitative relationships with the electrical resistance measurements. For processing of numerous measurement data, an autonomous data acquisition system was devised. We also established a specimen preparation procedure and a method for electrode setup. Coupon and panel CFRP laminate specimens with several known damage were tested. Coupon specimens with various sizes of artificial delaminations obtained by inserting Teflon film were manufactured and the resistance was measured. The measurement results showed that increase of delamination size led to increase of resistance implying that it is possible to sense the existence and size of delamination. A quasi-isotropic panel was manufactured and electrical resistance was measured. Then three different sizes of holes were drilled at a chosen location. The panel was prepared using the established procedures with six electrode connections on each side making a total of twenty-four electrodes. Vertical, horizontal, and diagonal pairs of electrodes were chosen and the resistance was measured. The measurement results showed the possibility of the established measurement system for an in-situ damage detection method for CFRP composite structures.