• Title/Summary/Keyword: Film cracks

Search Result 169, Processing Time 0.024 seconds

Surface Properties of Superconducting Thick Film with Suspension Solution added with Polymer (폴리머를 첨가한 현탁용매에 따른 초전도 후막의 표면특성)

  • 소대화;이영매;임병제;김태완;전용우;코로보바나탈리아
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.503-506
    • /
    • 2000
  • YBCO superconducting thick films were prepared on Ag wire by electrophoresis in acetone and ethanol with chemically modified suspension. The addition of organic compounds, such as PEG, EG into suspension solution for improving critical current density was investigated. Surface state, deposition condition, pore distribution and cracks were investigated by using SEM photographs. Controlling preparation conditions were studied for reducing these defects. As a results, in acetone solution, the surface crack of samples was decreased with increasing PEG. On the contrary, the surface crack of sample was increasing with increasing the amount of EG. In ethanol solution without I$_2$, which was generally used for an electrolyte, the deposition time was longer than this of acetone. For that reason the sample deposition in ethanol time was needed with enough stirring time for suspending YBCO powder and deposition time.

  • PDF

Control of Cracking on Superconducting Wire by Electrophoresis (전기영동 초전도 선재의 크랙발생 억제)

  • 소대화;이영매;조용준;김태완;박정철;코로보바나탈리아
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.270-273
    • /
    • 2000
  • For the well-preparation of the superconducting wire by electrophoresis, the control of the cracking on the YBCO, BSCCO superconductor deposited on Ag wire in acetone and buthanol solution with PEG(poly-ethylenglycol) was investigated with XRD and SEM analysis. After deposition, drying and heat treatment process, the cracks on the deposited surface of YBCO and BSCCO samples was clearly removed and decreased, which was perpared in suspension with addition of PEG from 1 to 3ml. However, in the case of the addition rate of PEG in acetone suspension was exceeded in 3ml, BSCCO superconductor deposited on Ag wire was slightly melted at 90$0^{\circ}C$ which was the same heat treatment condition of other samples with different additin rate of PEG. In the process of electrophoretic deposition, drying and heat treatment, PEG added into the suspension solution as a binder was very useful to prepare the crack-free thick film-wire of YBCO and BSCCO.

  • PDF

Effect of Al content on coating adhesion of hot rolled galvanized iron manufactured without pickling process (무산세 열연 용융아연도금강판의 도금밀착성에 미치는 도금욕 Al농도의 영향)

  • 전선호;최진원
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.31-42
    • /
    • 1999
  • The effect was investigated that aluminium in the zinc bath has on the coating adhesion of Hot-rolled Galvanized Iron(HGI) manufactured without pickling process. It is thought that the coating adhesion of HGI manufactured without pickling process is good due to the fact that increasing aluminium content in the zinc bath makes zinc and aluminium diffuse to the cracks or pores in the scale formed through the reduction heat treatment, and Fe-Zn-Al compound with good ductility is formed in the scale layer and plays a role of anchor between zinc coating and substrate. It is possible that HGI with the good coating adhesion was produced without pickling treatment in the zinc bath with more that 3wt% of Al content even at the $550^{\circ}C$ of conventional reduction heating temperature. In creasing the temperature of heating section and aluminium content in the zinc bath prevents the Zn-Fe alloy. The corrosion resistance of HGI manufactured without pickling process is excellent because of the mixed reaction of zinc sacrifice and aluminium passivity film.

  • PDF

Characteristic Evaluation According to the Surface Treatment Method of SKD61 Mold Steel for Aluminum Casting (알루미늄 주조용 SKD61 금형강의 표면처리 방법에 따른 특성 평가)

  • Choi, Se-Weon;Kim, Cheol-Woo;Kim, Yong-Ho;Yoo, Hyo-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.281-286
    • /
    • 2021
  • Arc ion plating (AIP), laser cladding, and nitriding are methods that can prevent mold damage or repair and create cracks and breakages on the die surface. The dissolution and soldering behavior of coated SKD61 by using arc ion plating, laser cladding, and nitriding was investigated. The structure of the coating was investigated as a function of deposition conditions by X-ray diffraction and the crystallographic orientation was determined using the texture factor. The TiAlN film deposited with AIP showed excellent corrosion resistance in the molten aluminum alloy at 680℃. In this paper, we have detailed the corrosion and mass loss phenomena associated with these steel-cast metal interactions.

Design of Zero-Stress Encapsulation for Mechanical Stability of Flexible OLED Displays (유연 OLED 디스플레이의 기계적 안정성을 위한 제로 스트레스 봉지막 설계)

  • Jeong, Eun Gyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.39-43
    • /
    • 2022
  • In this paper, a study was conducted on encapsulation technology for high mechanical stability of flexible displays. First, unlike conventional encapsulation barrier that exclude cracks as much as possible for low water vapor transmission rate (WVTR), mechanical properties were improved by using a defect suppression mechanism introduced with crack arresters. The zero-stress encapsulation barrier optimizes the residual stress of the thin film based to improve the internal mechanical stability. The zero-stress encapsulation barrier was applied to the organic light emitting diodes (OLEDs) to confirm its characteristics and lifetime. Due to improved internal mechanical stability, it has a longer lifetime more than 35% compared to conventional encapsulation technologies. As the zero-stress encapsulation barrier proposed in this study does not require additional deposition process, it is not difficult to apply it. Based on various advantages, it is expected to play an important role in flexible displays.

Formation of Diamond/Mo/Ni Multi-Layer on Steel Substrate (강 표면의 다이아몬드/몰리브데늄/니켈 복합층의 생성)

  • Lee, H.J.;J.I. Choe;Park, Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.37-37
    • /
    • 2002
  • Diamoncl/Mo/Ni multi-layers on SKH-51 steel substrate was prepared to improve the abrasive wear resistance of a tool and die by a commercial chemical vapor deposition unit and electro-plating. The diamond after 7 hour deposition had cuba-octahedral structure with 2~5$\mu\textrm{m}$ grains. The existence of non-ferrous metals such as chromium, nickel and molybdenum between diamond and SKH-51 substrate results in forming higher quality of diamond layer by retarding carbon diffusion in the diamond layer during deposition, and also improving hardness and wear resistance. Surface cracks on the film was sometimes observed by the difference of by the thermal expansion coefficients between the steel substrate and the deposited layers during cooling.

  • PDF

Spalling of Intermetallic Compound during the Reaction between Electroless Ni(P) and Lead-free Solders (무전해 Ni(P)과 무연솔더와의 반응 중 금속간화합물의 spalling 현상에 관한 연구)

  • Sohn Yoon-Chul;Yu Jin;Kang S. K.;Shih D. Y,;Lee Taek-Yeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.37-45
    • /
    • 2004
  • Electroless Ni(P) has been widely used for under bump metallization (UBM) of flip chip and surface finish layer in microelectronic packaging because of its excellent solderability, corrosion resistance, uniformity, selective deposition without photo-lithography, and also good diffusion barrier. However, the brittle fracture at solder joints and the spatting of intermetallic compound (IMC) associated with electroless Ni(P) are critical issues for its successful applications. In the present study, the mechanism of IMC spatting and microstructure change of the Ni(P) film were investigated with varying P content in the Ni(P) film (4.6,9, and $13 wt.\%$P). A reaction between Sn penetrated through the channels among $Ni_3Sn_4$ IMCs and the P-rich layer ($Ni_3P$) of the Ni(P) film formed a $Ni_3SnP$ layer. Thickening of the $Ni_3SnP$ layer led to $Ni_3Sn_4$ spatting. After $Ni_3Sn_4$ spatting, the Ni(P) film directly contacted the molten solder and the $Ni_3P$ phase further transformed into a $Ni_2P$ phase. During the crystallization process, some cracks formed in the Ni(P) film to release tensile stress accumulated from volume shrinkage of the film.

  • PDF

Effects of Surface Oxide Film on Massive Hydriding of Zr Alloy (지르코늄 합금의 대량수소화에 미치는 표면산화막의 영향)

  • Kim, Sun-Ki;Bang, Je-Geon;Kim, Dae-Ho;Lim, Ik-Sung;Yang, Yong-Sik;Song, Kun-Woo;Kim, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.597-603
    • /
    • 2008
  • Oxide effects experiments on massive hydriding reactions of Zr alloy with hydrogen gas were carried out at $400^{\circ}C$ under 1 atm in a $H_2$ environment with a thermo-gravimetric apparatus (TGA). Experimental results for oxide effects on massive hydriding kinetics show that incubation time is not proportional to oxide thickness. The results also show that the massive hydriding kinetics of pre-filmed Zr alloys follows linear kinetic law and that the hydriding rates are similar to that of oxide-free Zr alloys once massive hydriding is initiated. Unlikely microstructure of the oxide during incubation time, physical defects such as micro-cracks and pores were observed in the oxide after incubation time. Therefore, it seems that the massive hydriding of Zr alloys can be ascribed to short circuit paths and mechanical or physical defects, such as micro-cracks and pores in the oxide, rather than to hydrogen diffusion through the oxide resulting from the increase of oxygen vacancies in the hypo-stoichiometric oxide.

Cracking Near a Hole on a Heat- Resistant Alloy Subjected to Thermo-Mechanical Cycling (열 및 기계적 반복하중 하의 내열금속 표면 홀 주변 산화막의 변형 및 응력해석)

  • Li, Feng-Xun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1227-1233
    • /
    • 2010
  • In the hot section of a gas turbine, the turbine blades were protected from high temperature by providing a thermal barrier coating (TBC) as well as by cooling air flowing through internal passages within the blades. The cooling air then passed through discrete holes on the blade surface, creating a film of cooling air that further protects the surface from the hot mainstream flow. The holes are subjected to stresses resulting from the lateral growth of thermally grown oxide, the thermal expansion misfit between the constituent layers, and the centrifugal force due to high-speed revolution; these stresses often result in cracking. In this study, the deformation and cracks occurring near a hole on a heat-resistant alloy subjected to thermo-mechanical cycling were investigated. The experiment showed that cracks formed around the hole depending on the applied stress level and the number of cycles. These results could be explained by our analytic solution.

Change of Surface Morphology with the Spreading Rate of Organic Solution During Interfacial Polymerization for Polyamide-based Thin Film Composite Membrane Manufacturing Process (폴리아마이드계 박막복합막 제조 공정에서 계면중합의 유기용액 퍼짐 속도에 따른 표면 모폴로지의 변화)

  • Park, Chul Ho
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.506-510
    • /
    • 2017
  • The interfacial polymerization method has been applied to various fields as a reaction in which reactive monomers dissolved in two immiscible solutions cause polymerization at the interface. In the case of water treatment membranes, m-phenylene diamine and trimesoyl chloride are used as reactants. The performance of the membrane is affected by various polymerization factors. In this study, we investigated how the spreading rate of the organic solution influences the surface and structure of the membrane. Spreading rate of organic solutions was adjusted to 7.6 and 25 mm/sec. The solution volume of the organic phase was adjusted to 1~3 drops. The observed results showed that cracks were not found in the polyamide membrane when dropping at a drop of 7.6 mm/sec and dropping two drops at 25 mm/sec. On the other hand, cracks occurred in all cases. Therefore, the spreading rate of the initial organic solvent is expected to greatly affect the performance of the polyamide membrane.