• Title/Summary/Keyword: Film adhesion

Search Result 825, Processing Time 0.025 seconds

Adhesion Change of AZO/PET Film by ZrCu Insertion Layer

  • Ko, Sang-Won;Jung, Jong-Gook;Park, Kyeong-Soon;Lim, Sil-Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.252-259
    • /
    • 2016
  • In order to form an aluminum-doped zinc oxide (AZO) transparent electrode film on a polyethylene terephthalate (PET) substrate used for a flexible display substrate, the AZO transparent electrode was produced at low temperature without substrate heating. Even though the produced electrode showed characteristic optical transmittance of 90 % (at 550 nm) and sheet resistance within $100{\Omega}/sq$, cracks occurred 10 minutes after loading applied 2 mm radius of curvature, and the sheet resistance increased linearly. An insertion layer of ZrCu was formed between the AZO film and the PET substrate to suppress the generation of cracks on the AZO film. It was verified that the crack was not generated 30 minutes after the loading of 2 mm radius of curvature, and no increase in sheet resistance was recorded. There was also not cracks in the dynamic bending test of 4 mm radius, but surface resistance was slightly increased. As a result, the ZrCu insertion film improved the interfacial adhesion between the substrate and AZO film layer without increasing sheet resistance and decreasing transmittance.

Adhesion Improvement of Electroless Copper Plated Layer on PET Film - Effect of Pretreatment Conditions - (무전해 동도금 피막의 접착력 향상에 관한 연구 - PET 필름의 전처리 조건의 영향 -)

  • 오경화;김동준;김성훈
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.302-310
    • /
    • 2001
  • Cu/PET film composites were prepared by electroless copper plating method. In order to improve adhesion between electroless Cu plated layer and polyester (PET) film, the effect of pretreatment conditions such as etching method and mixed catalyst composition, and accelerator was investigated. Compared to NaOH etching medium, PET film was more finely etched by HCl solution, resulting in an improvement in adhesion between Cu layer and PET film. However, there were no significant differences in electromagnetic interference shielding effectiveness as a function of etching medium. The surface morphology of Cu plated PET film revealed that Pd/Sn colloidal particles became more evenly distributed in the smaller size by increasing the molar ratio of PdCl$_2$ : SnCl$_2$ from 1 : 4 to 1 : 16. With increasing the molar ratio of mixed catalyst, the adhesion and the shielding effectiveness of Cu plated PET film were increased. Furthermore, HCl was turned out to be a better accelerator than NaOH in order to enhance the activity of the mixed PdCl$_2$/SnCl$_2$ catalyst, which facilitated the formation of more uniform copper deposit on the PET film.

  • PDF

Fabrication and Characteristics of Hot-Film Type Micro-flowsensors integrated with RTD (측온저항체 온도센서가 집적화된 발열저항체형 마이크로 유량센서의 제작 및 특성)

  • 정귀상;홍석우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.612-616
    • /
    • 2000
  • This paper describes on the fabrication and characteristics of hot-film type micro-flowsensors integrated with Pt-RTD(resistance thermometer device) and micro-heater on the Si membrane in which MgO thin-film was used as medium layer in order to improve adhesion of Pt thin-film to SiO$_2$layer. The MgO layer improved adhesion of Pt thin-film to SiO$_2$layer without any chemical reactions to Pt thin-film under high annealing temperatures. Output voltages increased due to increase of heat-loss from sensor to external. The output voltage was 82 mV at $N_2$flow rate of 2000 sccm/min heating power of 1.2 W. The response time($\tau$:63%) was about 50 msec when input flow was stepinput

  • PDF

Improvement of Polyimide/Epoxy Adhesion Strength from the Modification of Polyimide Surface and Epoxy Adhesive (폴리이미드 표면개질과 에폭시접착제 개질을 통한 폴리이미드/에폭시의 접착력 향상)

  • Kim, Seong-Hun;Lee, Dong-U;Jeong, Gyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.65-72
    • /
    • 1999
  • In order to minimize flexible printed circuit(FPC), which is used in computer, communication, medical facility, aviation space industry, it is required to improve the interfacial adhesion of polymide/epoxy or polyimide/polyimide consists of FPC. In this study, it was considered to improve the adhesion strength of polyimide/epoxy joint by introducing functional group on polyimide film and improving mechanical property of epoxy. Functional group on polyimide film was introduced by changing polyimide film surface to polyamic acid in KOH aqueous solution. The optimum conditions for surface modification were the concentration of 1M KOH and treatment time of 5min. Also, the optimum adhesion strength of polyimide/epoxy joint was obtained using rubber modified epoxy and polyamic acid as a base resin and curing agent of epoxy adhesive, respectively. The degree of surface modification of polyimide film examined with contact angle measurement of FTIR, thus modification of polyimide to polyamic acid was identified. Fracture surface of plymide/epoxy joint was analyzed by scanning electron microscopy, and modified polyamic acid reimidezed to polymide as increasing curing temperature.

  • PDF

Dielectric properties of Pt/PVDF/Pt modified by low energy ion beam irradiation

  • Sung Han;Yoon, Ki-Hyun;Jung, Hyung-Jin;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.110-110
    • /
    • 1999
  • Polyvinylidenefluoride (PVDF) is most used in piezoelectric polymer industry. Electrode effect on the electrical properties of PVDF has been investigated. al has been used due to fair adhesion for PVDF. Work function of metal plays an important role on the electrical properties of ferroelectrics for top and /or bottom electrode. However, Al has much lower work function than Pt or Au and so leakage current of Al/PVDF/Al may be large. Pt or Au has not been used for electrode of PVDF system due to poor adhesion. PVDF irradiated by Ar+ ion beam with O2 environment takes good adhesion to inert metal. Contact angle of PVDF to triple distilled water was reduced from 75$^{\circ}$ to 31$^{\circ}$ at 1$\times$1015 Ar+/cm2. Working pressure was 2.3$\times$10-4 Torr and base pressure was 5$\times$10-6 Torr. Pt was deposited by ion beam sputtering and thickness of pt film was about 1000$\AA$. in previous study, enhancing adhesion of Pt on PVDF was shown. in this study, effect of electrode on PVDF will be represented.

  • PDF

Studies on the Adhesion of W to TiN(II) (TiN에 대한 W의 부착특성에 관한 연구(II))

  • Lee, Jong-Mu;Gwon, Nan-Yeong;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.593-597
    • /
    • 1993
  • Adhesion of CVD W to the TiN glue layer in the blanket W process which is a promising candidate for filing contact holes in subhalfmicron ULSIs has been investigated. The adhesion was enhanced with increasing the W film thickness due to the decrease of the TiN film stress. The adhesion strength was increased by the sputter etching of the TiN surface prior to the W deposition owing to the removal of contaminants and the increase of the surface roughness. The adhesion of the W film to the TiN glue layer property was also improved by Ar ion implantation of the TiN surface owing to the activation of the TiN surface.

  • PDF

The Adhesion of TiN Coatings on Plasma-nitrided Steel (이온 질화층이 TiN 박막의 밀착성에 미치는 영향)

  • Ko, K.M.;Kim, H.W.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.1-14
    • /
    • 1991
  • In PECVD(Plasma-Enhanced Chemical Vapor Deposition) process, titanium nitride is thin and its adhesion is poor for the protective coatings. Therefore it has been studied that intermediate layer forms between substrate and TiN thin film. Using R.F. plasma nitriding, nitride layer was first formed, then TiN thin film coated by PECVD. The chemical composition of the coatings has been characterized using AES, EDS and their crystallographic structure by means of XRD. Mechanical properties such as microhardness and film adhesion have also been determined by vickers hardness test, scratch test and indentation test. As a result, there was no difference in chemical composition and structure between the TiN deposition only and the composite of TiN deposition on nitrided steel. It was found that nitrided substrate increased the hardness of TiN coatings and was beneficial in preventing the plastic deformation in the substrate. Therefore the effective load bearing capacity of the TiN coatings on nitrided steel was increased and their adhesion was improved as well. According to the results of this study, the processes that lead to the formation of composite layers characterized by good working properties, i.e., high microhardness, adhesion and resistance to deformation.

  • PDF

Surface treatment of polyethylene terephthalate films by corona discharge (코로나방전에 의한 polyethylene terephthalate 필름의 표면처리)

  • 김명룡
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.316-323
    • /
    • 1995
  • A vital step in magnetic tape manufacturing is the surface modification of polymer substrate prior to ink application. A critical element for good adhesion of magnetic ink on polymeric substrate is the ability to join ink in cost-effective manner. Corona discharging is one of the effective methods of modifying polymer surface to improve adhesion while maintaining the desirable properties of the film itself. Surface treatment by corona which is exposure of film surface to electron or ion bombardment, rather than mere exposure to active species, like atomic oxygen or ozone, can enhance adhesion by removing contaminant, electret, roughening surface, and/or introducing reactive chemical groups. Reactive neutrals, ions, electron and photons generated during the corona treatment interact simultaneously with polymers to alter surface chemical composition, wettability, and thus film adhesion. However, it is highly recommended that extensive chains scission be avoided because it can lead to side-effect by forming sticky matter, resulting in dropouts. This paper reviews principles of surface preparation of polymer substrate by corona discharging. In addition, the experimental section provides a description of parameter optimization on corona discharging treatment and its side-effect. Experimental results are discussed in terms of surface wetting as determined by contact angle measurements.

  • PDF