• Title/Summary/Keyword: Film Winding Core

Search Result 10, Processing Time 0.024 seconds

Current Limiting Characteristics of a Flux-Lock Type SFCL for a Single-Line-to-Ground Fault

  • Oh, Geum-Kon;Jun, Hyung-Seok;Lee, Na-Young;Choi, Hyo-Sang;Nam, Gueng-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.70-77
    • /
    • 2006
  • We have fabricated an integrated three-phase flux-lock type SFCL, which consists of an YBCO($YB_a2Cu_3O_7$) thin film and a flux-lock reactor wound around an iron core of each phase. In order to apply the SFCL in a real power system, fault analyses for the three-phase system are essential. The short-circuit currents were effectively limited by adjusting the numbers of winding of each secondary coil and their winding directions. The flux flow generated in the iron core cancelled out under the normal operation due to the parallel connection between primary and secondary windings. However, the flux-lock type SFCL with same iron core was operated just after the fault due to the flux generating in the iron core. To analyze the current limiting characteristics, the additive polarity winding was compared with the subtractive one in the flux lock reactor. Whenever a single line-to-ground fault occurred in any phase, the peak value of the line current of the fault phase in the additive polarity winding increased up to about 12.87 times during the first-half cycle. On the other hand, the peak value in the subtractive polarity winding increased up to about 34.07 times under the same conditions. This is because the current flow between the primary and the secondary windings changed to additive or subtractive status according to the winding direction. We confirmed that the current limiting behavior in the additive polarity winding was more effective for a single-line-to-ground fault

Vibration Analysis of Film Winding Core Automatic Supply System Using US Military Standards (미 군사규격을 적용한 권취 코어 자동공급장치의 진동해석)

  • Go, Jeong-Il;Park, Soo-Hyun;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.91-99
    • /
    • 2022
  • By applying METHOD 514.8 of the US military standard MIL-STD-810H, vibration analysis of the winding core automatic feeding device was performed during vehicle transportation. The contact point between the LM guide and main support frame was weak in the vertical axis, transverse axis, and longitudinal axis during the transportation of the automatic winding core feeder vehicle, and the maximum equivalent stress was 236.31 MPa in the longitudinal axis. When random vibration was applied, the safety margin in the longitudinal direction was 0.26, indicating low safety. The safety margin was changed by increasing the damage factor to 0.1. Finally, the safety margin was improved to 3.48 to secure safety. Resonance occurred with a Q factor of 9.34 in the harmonic response to which the RMS value of the ASD data was input, and the vertical axis safety margin was derived as 0.16. When the damping factor was 0.15, the Q factor was 3.37, and resonance was avoided with a safety margin of 6.62.

Variance of Initial Fault Current Limiting Instant in Flux-lock Type SFCL (자속구속형 전류제한기의 초기 사고전류 제한시점 변화)

  • Park, Chung-Ryul;Lim, Sung-Hun;Park, Hyoung-Min;Choi, Hyo-Sang;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.269-275
    • /
    • 2005
  • A flux lock-type SFCL consists of two coils which are wound in parallel each other through an iron core, and a HTSC thin film connects in series with coil 2. The operation of the flux-lock type SFCL can be divided into the subtractive polarity winding and the additive polarity winding operations according to the winding directions between coil 1, coil 2. When a fault occurs, the fault current in the HTS thin film exceeds the critical current so that resistance is generated in the HTS film, and thereby the fault current is limited by an instant rise in the impedance of the flux-lock type SFCL. We investigated he variances of initial fault current limiting instant according to the ratio of inductance of coil 1 and coil 2 in the flux-lock type SFCL. It was confirmed from experiments that the initial fault current limiting instant in the subtractive polarity and additive polarity windings were faster as the ratio of coil 2' inductance for coil 1's inductance increased. The 1st peak of fault current in case of the subtractive polarity winding was higher as the ratio of coil 2's inductance for coil 1's inductance increased. On the other hand, in case of the additive polarity winding, the 1st peak of fault current was lower.

Fault Current limiting Characteristics of Flux-Lock type Superconducting Fault Current Limiter with Open-loop Iron Core according to the Voltage Level (개루프 철심을 이용한 자속구속형 초전도한류기의 전압별 전류제한 특성분석)

  • Nam, Gueng-Hyun;Choi, Hyo-Sang;Park, Hyoung-Min;Cho, Yong-Sun;Lee, Na-Young;Lim, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.368-370
    • /
    • 2005
  • Superconducting fault current limiter (SFCL) provides the effect such as enhancement in power system reliability due to limiting fault current in a few miliseconds. The flux-lock type SFCL among various type SFCLs consists of two coils wound on the same iron core and a component using the YBCO thin film. In the SFCL, operation characteristics can be controlled by adjusting the inductances and the winding directions of the coils. In this paper, we investigated the various fault current limiting characteristics according to the voltage level. To analyze the current limiting performance, we compared operational characteristics on the subtractive polarity winding direction on in case of open-loop iron core.

  • PDF

Characteristics under the Iron Core Conditions of the Flux-lock Reactor (자속구속리액터의 철심조건에 따른 특성)

  • Lee, Na-Young;Choi, Hyo-Sang;Park, Hyoung-Min;Cho, Yong-Sun;Nam, Gueng-Hyun;Han, Tae-Hee;Lim, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.875-876
    • /
    • 2006
  • Superconducting fault currents(SFCLs) are expected to improve not only reliability but also stability of power systems. The analysis on current limiting operations of the flux-lock type SFCL, which consists of a flux-lock reactor wound an iron core and a YBCO thin film, was compared the open-loop with the closed-loop iron core of the subtractive polarity winding. In the SFCL, operation characteristics could be controlled by adjusting the inductances and the winding directions of the coils, then magnetic field induced in the iron core. The current limiting characteristics under the same experimental conditions were generated regardless of the iron core conditions. We confirmed that capacity of the SFCL was increased effectively by the closed-loop iron core. However, the power burden of the system could be lowered by the open-loop iron core.

  • PDF

Design of slotless BLDC motor using film coil (필름코일을 이용한 슬롯리스형 BLDC 모터의 설계)

  • Kim, Mhan-Joong;Jae, Hwan-Young;Kim, Hak-Won;Sung, Byung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.104-106
    • /
    • 2001
  • In this paper, it is object of design of high efficiency slotless BLDC motor using film coil. Slotless BLDC motor is able to have high efficiency property and low cogging torque, due to magnetization of stator core have constant contribution by slotless core. But it is difficult to make coil winding of slotless BLDC motor. So we make amateur of slotless BLDC motor using film coil. Film coil is fabricated by drilling, electro-plating and etching of copper/insulator/copper plate. In this paper, after design of slotless BLDC motor for moving axial blower, it is fabricated by NdFeB permanent magnet type rotor and film coil.

  • PDF

Current Limiting Characteristics of flux-lock Type High-lc Superconducting Fault Current Limiter According to fault Angles (사고각에 따른 자속구속형 전류제한기의 전류제한특성)

  • Park, Hyoung-Min;Choi, Hyo-Sang;Cho, Yong-Sun;Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.747-753
    • /
    • 2005
  • We Investigated the current limiting characteristics of the flux-lock type superconducting fault current limiter(SFCL) by fault angles. The flux-lock type SFCL consists of the primary and the secondary copper coils wound in parallel through the iron core and YBCO thin film. In this paper, the current limiting characteristics of the flux-lock type SFCL by fault angles in case of the subtractive and the additive polarity windings were compared and analyzed. The flux-lock type SFCL limited fault current more quickly as the fault angles increased. On the other hand, the initial power burden of the superconducting element during the fault increased as the fault angles increased. In addition, we found that the resistance of the flux-lock type SFCL in case of the subtractive polarity winding was more increased than that of the additive polarity winding. The peak current of the fault current in case of the subtractive polarity winding was larger than that of the additive polarity winding.

Quench Characteristics of Flux-lock type Superconducting Fault Current Limiter using Open-loop Iron Core (개루프 철심을 이용한 자속구속형 초전도한류기의 퀜치특성)

  • Nam, Gueng-Hyun;Choi, Hyo-Sang;Park, Hyoung-Min;Cho, Yong-Sun;Lee, Na-Young;Lim, Sung-Hun;Park, Chung-Ryul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.159-160
    • /
    • 2005
  • The superconducting fault current limiter(SFCLs) provides the effect such as enhancement in the power system reliability due to limiting fault current in a few miliseconds. The Flux-lock type SFCL using the YBCO film among various type SFCLs consists of the primary and the secondary copper coils that are wound in parallel each other through the iron core. The operation can be controlled by adjusting the inductances and the winging directions of each the coil. We compared the current limiting performance on the additive and the subtractive polarity winding directions in case of an open-loop iron core. To analyze quench characteristics, we experimented various phase angle.

  • PDF

The Analysis of Operation Characteristics of Flux-Lock Type High-Tc Superconducting Fault Currents Limiter (자속 구속형 고온초전도 전류제한기의 동작특성 분석)

  • Park Chung-Ryul;Lim Sung-hun;Park Hyoung-Min;Lee Jong-Hwa;Ko Seokcheol;Choi Hyo-Sang;Han Byoung-Sung;Hyun Ok-Bae;Chung Dong-Chul
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1130-1132
    • /
    • 2004
  • In this paper, we investigated the operational characteristics of the fault current limiting in the The flux-lock type high-Tc superconducting fault current limiter. The flux-lock type high-Tc superconducting fault current limiter was consisted of primary and secondary copper coils that flux was locked on iron core and YBCO thin film. The operational characteristic of a flux-lock type SFCL dependent on winding direction of coil 1 and coil 2, and the number of turns of coil 1 and coil 2, inductances of the coils, saturation in iron core, the properties of superconducting element etc. In this cases, we investigated the fault currents limiting characteristics of the flux-lock type SFCL when winding direction of coil 1 and coil 2 was subtractive polarity winding.

  • PDF

Characteristics of the Flux-lock Type Superconducting Fault Current Limiter According to the Iron Core Conditions (자속구속형 초전도 전류제한기의 철심조건에 따른 특성)

  • Nam, Gueng-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Cho, Guem-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.38-45
    • /
    • 2006
  • The superconducting fault current limiters(SFCLs) provide the effect such as enhancement in power system reliability due to limiting the fault current within a few miliseconds. Among various SFCLs we have developed a flux-lock type SFCL and exploited a special design to effectively reduce the fault current according to properly adjustable magnetic field after the short-circuit test. This SFCL consists of two copper coils wound in parallel on the same iron core and a component using the YBCO thin film connected in series to the secondary copper coil. Meanwhile, operating characteristics can be controlled by adjusting the inductances and the winding directions of the coils. To analyze the operational characteristics, we compared closed-loop with open-loop iron core. When the applied voltage was 200[Vrms] in the additive polarity winding, the peak values of the line current the increased up to 30.71[A] in the closed-loop and 32.01[A] in the open-loop iron core, respectively. On the other hand, in the voltages generated at current limiting elements were 220.14[V] in the closed-loop and 142.73[V] in the opal-loop iron core during first-half cycle after fault instant under the same conditions. We confirmed that the open-loop iron core had lower power burden than in the closed-loop iron core. Consequently, we found that the structure of iron core enabled the flux-lock type SFCL at power system to have the flexibility.