• Title/Summary/Keyword: Film Condensation

Search Result 163, Processing Time 0.031 seconds

Experimental Study on the Enhancement of Condensation Heat Transfer on a Single Horizontal Tube Utilizing EHD (전장을 이용한 수평관 주위에서의 응축 열전달촉진에 관한 실험적 연구)

  • 유갑종;추홍록;김석준;이성진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3008-3020
    • /
    • 1994
  • Condensation heat transfer on a single horizontal tube with electric fields (Electro-Hydro-Dynamics, (EHD)) has been studied experimentally. Results are presented for EHD enhanced condensation of R-113 on a single horizontal tube using several electrode geometries. Especially, its attention was focused on the effects of electrode geometry, electric field strength and the gap of the electrode. In this study, single wire, helical, ring and mesh electrode were used. The range of the imposed voltage was 0~20 kV. As the voltage was increased the surface of liquid became an unstable wave, stream jet, liquid column and then liquid extraction in sequence. Among the various kinds of electrodes, the single wire electrode is suitable for practical application.

An Analytic Study on Laminar Film Condensation along the Interior Surface of a Cave-Shaped Cavity of a Flat Plate Heat Pipe

  • Lee, Jin-Sung;Kim, Tae-Gyu;Park, Tae-Sang;Kim, Choong-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.966-974
    • /
    • 2002
  • An analytic approach has been employed to study condensate film thickness distribution inside cave-shaped cavity of a flat plate heat pipe. The results indicate that the condensate film thickness largely depends on mass flow rate and local velocity of condensate. The increasing rate of condensate film for circular region reveals about 50% higher value than that of vertical region. The physical properties of working fluid affect significantly the condensate film thickness, such as the condensate film thickness for the case of FC-40 are 5 times larger than that of water. In comparison with condensation on a vertical wall, the average heat transfer coefficient in the cave-shaped cavity presented 10∼15% lower values due to the fact that the average film thickness formed inside the cave-shaped cavity was larger than that of the vertical wall with an equivalent flow length. A correlation formula which is based on the condensate film analysis for the cave-shaped cavity to predict average heat transfer coefficient is presented. Also, the critical minimum fill charge ratio of working fluid based on condensate film analysis has been predicted, and the minimum fill charge ratios for FC-40 and water are about Ψ$\_$crit/=3∼7%, Ψ$\_$crit/=0.5∼1.3% respectively, in the range of heat flux q"=5∼90kW/㎡.

Synthesis and characterization Au doped TiO2 film for photocatalytic function

  • Son, Jeong-Hun;Bae, Byung-Seo;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.280-284
    • /
    • 2015
  • Au doped $TiO_2$ nanoparticles have been synthesized using a reverse micelle technique combined with metal alkoxide hydrolysis and condensation. Au doped $TiO_2$ was coated with glass substrate. The size of the particles and thickness of the coating can be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TTIP within the micro-emulsion. The average size of synthesized Au doped $TiO_2$ nanoparticle was about in the size range of 15 to 25 nm and the Au particles formed mainly the range of 2 to 10 nm in diameter. The effect of synthesis parameters, such as the molar ratio of water to TTIP and the molar ratio of water to surfactant, are discussed. The synthesized nanopaticles were coated on glass substrate by a spin coating process. The thickness of thin film was about 80 nm. The degradation of MB on a $TiO_2$ thin film was enhanced over 20 % efficiency by the incorporation of Au.

The Experimental Study on the Heat Transfer of HFC134a for Condensation Tubes with Various Enhanced Surfaces (응축전열관 외부형상 변화에 따른 HFC134a의 열전달 실험)

  • Park Chan-Hyoung;Lee Young-Su;Jeong Jin-Hee;Kang Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this paper are to study the characteristics of heat transfer for enhanced tubes (19.05 mm) used in the condenser with high saturation temperatures and to provide a guideline for optimum design of a condenser using HFC134a. Three different enhanced tubes are tested at a high saturation temperature of $59.8^{\circ}C$ (16 bar); a low-fin and three turbo-C tubes.. The refrigerant, HFC134a is condensed on the outside of the tube while the cooling water flows inside the tube. The film Reynolds number varies from 130 to 330. The wall subcooling temperature ranges from $2.7^{\circ}C$ to $9.7^{\circ}C$. This study provides experimental heat transfer coefficients for condensation on the enhanced tubes. It is found that the turbo-C(2) tube provides the highest heat transfer coefficient.

Condensation Heat Transfer Coefficients of Binary Refrigerant Mixtures on Enhanced Tubes (열전달 촉진관에서 2원 혼합냉매의 외부 응축열전달계수)

  • 김경기;서강태;채순남;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.161-167
    • /
    • 2002
  • In this study, external condensation heat transfer coefficients (HTCs) of two non-azeotropic refrigerant mixtures of HFC32/HFC134a and HF0134a/HCF0123 at various compositions were measured on both low fin and Turbo-C enhanced tubes of 19.0 mm outside diameter All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3- 8 K. Test results showed that HTCs of the tested mixtures on the enhanced tubes were much lower than the ideal values calculated by the mass fraction weighting of the pure compo- nents'HTCs. Also the reduction of HTCs due to the diffusion vapor film was much larger than that of a plain tube. Unlike HTCs of pure fluids, HTCs of the mixtures measured on enhanced tubes increased as the wall subcooling increased, which was due to the sudden break up of the vapor diffusion film with an increase in wall subcooling. Finally, heat transfer enhancement ratios for mixtures were found to be much lower than those of pure fluids.

Condensation Heat Transfer to Rivulets of Condensate on Horizontal tubes (관표면에서의 곡면응축막의 열전달)

  • Bae, Soon-Hoon;Choe, Young-Don
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.4 no.1
    • /
    • pp.18-22
    • /
    • 1975
  • A simple analysis has been made of the condensation of vapor onto rivulets of condensate which are formed by non-wetting narrow Taflon strips circumferencially located in a certain interval on horizontal tubes. Heat transfer to the rivulets increased over $50\%$ above that to the Nusselt uniform thickness film. Results are directly applicable to condenser tubes in large steam condensers.

  • PDF

Evaluation of Ozone for Metal Oxide Thin Film Fabrication

  • Lim, Jung-Kwan;Park, Yong-Pil;Jang, Kyung-Uk;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.675-678
    • /
    • 2004
  • Ozone is usually generated from oxygen gas using a silent discharge apparatus and its concentration is less then 10 mol%. An ozone condensation system is constructed for metal oxide thin film fabrication. Ozone is condensed by the adsorption method, which is widely used for the growth of oxidation thin films such as superconductor. Highly condensed ozone is analyzed by three methods; ultraviolet absorption, thermal decomposition and Q-mass analyzing methods. Thermal decomposition method is most effective in the highly condensed ozone region and its method is superior to Q-mass analyzer for determining ozone concentration because of the simplicity of the method.

  • PDF

Characteristics of Oxidation System for Superconductor Thin Film( I ) (초전도 박막 제작을 위한 산화 시스템의 특성( I ))

  • Lim, J.K.;Park, Y.P.;Yang, D.B.;Kim, J.H.;Lee, H.K.;Park, N.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.272-275
    • /
    • 2002
  • An ozone condensation system is evaluated in the viewpoint of an ozone supplier for oxide thin film growth. Ozone is condensed by the adsorption and distillation method. Then their concentrations are analyzed by three methods; ultraviolet absorption, thermal decomposition and Q-mass analyzing methods. Thermal decomposition method is found to be available to the concentration evaluation from dilution to highly condensed ozone. The highest ozone concentration condensed by the adsorption method is evaluated to be 96 mol%. The ozone is supplied for a sufficiently long time to grow oxide thin films.

  • PDF

Assessment and Improvement of Condensation Models in RELAP5/MOD3.2

  • Choi, Ki-Yong;Park, Hyun-Sik;Kim, Sang-Jae;No, Hee-Cheon;Bang, Young-Seok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.585-590
    • /
    • 1997
  • The condonation models in the standard RELAP5/MOD3.2 code are assessed and improved based on the database, which is constructed from the previous experimental data on various condonation phenomena The default model the laminar film condonation in RELAP5/MOD3.2 does not give any reliable predictions, and its alternative model always predicts higher values than the experimental data Therefore, it is needed to develop a new correlation based on the experimental data of various operating ranges in the constructed database. The Shah correlation, which is used to calculate the turbulent film condensation heat transfer coefficients in the standard RELAP5/MOD3.2, well predicts the experimental data in the database. The horizontally stratified condonation model of RELAP5/MOD3.2 overpredicts both cocurrent and countercurrent experimental data The correlation proposed by H.J.Kim predicts the database relatively well compared with that of RELAP5/MOD3.2 The RELAP5/MOD3.2 model should use the liquid velocity for the calculation of the liquid Reynolds number and be modified to conifer the effects of the gas velocity and the film thickness.

  • PDF

Experiments on the Condensation Heat Transfer Enhancement of Horizontal Circular Tube with Threaded Outside Surface (외표면 형상이 원관의 응축열전달에 미치는 영향)

  • Lee, Jin Ho;Nam, Leem Woo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.3
    • /
    • pp.230-237
    • /
    • 1988
  • An experiment was carried out to study the condensation heat transfer enhancement of horizontal circular cylinders with varying outside surface configurations. The refrigerant used is Freon-22 and the test condensing temperature is 34.1C. Pin-finned tube shows about 2.5-3.5 times higher overall heat transfer coefficient compared to that of smooth surface tube, thus has larger encomic benifit for condenser design. The condensation heat transfer coefficient was shown to increase as the fin-pitch of the pin-finned tube decreases for film Reynolds number larger than 100.

  • PDF