• 제목/요약/키워드: Film Boiling

검색결과 158건 처리시간 0.03초

액체,액체계의 막비등열전달 특성 (Film Boiling Heat Transfer Characteristics in Liquid-Liquid System)

  • 김병주
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.87-94
    • /
    • 1992
  • 본 연구에서는 실험적 해석을 통하여 액체-액체계의 직접접촉 막비등열전달 특성을 최소막비등지점과 막비등열유속의 측면에서 해석하고자 한다. 이는 직접접촉 비등에 대한 효율적인 열전달의 온도영역이나 주어진 액체-액체 계의 조합에 대한 증 기폭발의 발생가능성의 예측에 활용될 수 있을 것이다.

Film Boiling Heat Transfer from Relatively Large Diameter Downward-facing Hemispheres

  • Kim Chan Soo;Suh Kune Y.;Park Goon Cherl;Lee Un Chul;Yoon Ho Jun
    • Nuclear Engineering and Technology
    • /
    • 제35권4호
    • /
    • pp.274-285
    • /
    • 2003
  • Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Loop for Transient Analysis). Two test sections are made of copper to maintain Bi below 0.1. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of both the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the two test sections. The measured heat transfer coefficients for the test section with diameter 120 mm lie within the bounding values from the laminar film boiling analysis, while those for diameter 294 mm are found to be greater than the numerical results on account of the Helmholtz instability. There is little difference observed between the film boiling heat transfer coefficients measured from the two test sections. In addition, the higher thermal conductivity of copper results in the higher minimum heat flux in the tests. For the test section of diameter 120 mm, the Leidenfrost point is lower than that for the test section of diameter 294 mm. Destabilization of film boiling propagates radially inward for the 294 mm test section versus radially outward for the 120 mm Test Section.

Numerical investigation of film boiling heat transfer on the horizontal surface in an oscillating system with low frequencies

  • An, Young Seock;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.918-924
    • /
    • 2020
  • Film boiling is of great importance in nuclear safety as it directly influences the integrity of nuclear fuel in case of accidents involving loss of coolant. Recently, nuclear power plant safety under earthquake conditions has received much attention. However, to the best of our knowledge, there are no existing studies reporting film boiling in an oscillating system. Most previous studies for film boiling were performed on stationary systems. In this study, numerical simulations were performed for saturated film boiling of water on a horizontal surface under low frequencies to investigate the effect of system oscillation on film boiling heat transfer. A coupled level-set and volume-of-fluid method was used to track the interface between the vapor and liquid phases. With a fixed oscillation amplitude, overall, heat transfer decreases with oscillation frequency. However, there is a frequency region in which heat transfer remains nearly constant. This lock-on phenomenon occurs when the oscillation frequency is near the natural bubble release frequency. With a fixed oscillation frequency, heat transfer decreases with oscillation amplitude. With a fixed maximum amplitude of the additional gravity, heat transfer is affected little by the combination of oscillation amplitude and frequency.

Numerical investigation on ballooning and rupture of a Zircaloy tube subjected to high internal pressure and film boiling conditions

  • Van Toan Nguyen;Hyochan Kim;Byoung Jae Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2454-2465
    • /
    • 2023
  • Film boiling may lead to burnout of the heating element. Even though burnout does not occur, the heating element is subject to deformation because it is not sufficiently strong to withstand external loads. In particular, the ballooning and rupture of a tube under film boiling are important phenomena in the field of nuclear reactor safety. If the tube-type cladding of nuclear fuel ruptures owing to high internal pressure and thermal load, radioactive materials inside the cladding are released to the coolant. Therefore, predicting the ballooning and rupture is important. This study presents numerical simulations to predict the ballooning behavior and rupture time of a horizontal tube at high internal pressure under saturated film boiling. To do so, a multi-step coupled simulation of conjugated film boiling heat transfer and ballooning using creep model is adopted. The numerical methods and models are validated against experimental values. Two different nonuniform heat flux distributions and four different internal pressures are considered. The three-step simulation is enough to obtain a convergent result. However, the single-step simulation also successfully predicts the rupture time. This is because the film boiling heat transfer characteristics are slightly affected by the tube geometry related to creep ballooning.

A Study on the Correlations Development for Film Boiling Heat Transfer on Spheres

  • Jeong, Yong-Hoon;Beak, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.437-442
    • /
    • 1998
  • Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling heat been performed. However, there is no available correlation adequate for severe accident analysis. In this study, boiling heat transfer correlations have been developed, and their applicable ranges heat been enlarged and their prediction accuracy has been enhanced.

  • PDF

Experiments on Time Dependent Film Boiling on a Sphere

  • Ounpanich Bancha;Pomprapha Temsiri;Archakositt Urith;Nilsuwankosit Sunchai
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.403-406
    • /
    • 2002
  • A number of the experiments on the phenomenon in which the thermal energy was transferred from a hot sphere to the surrounding water through the film boiling process had been conducted. As the sphere only carried the thermal energy associated with its initially high temperature but did not contain any other thermal source, the film boiling was only driven by the decreasing temperature of the sphere and, thus, was time dependent. The results from the experiments showed that the temperature of the sphere was slowly decreased in the beginning. This corresponded to the period in which the sphere was penetrating the water surface. Later, when the sphere was fully submerged and the transition film boiling was observed over the whole surface, the temperature of the sphere was decreased relatively much faster. In the last stage, the temperature of the sphere was again slowly decreased. This was considered caused by the relatively low temperature of the sphere, which reduced and later ceased the film boiling process. In addition, the estimation of the departure rate of the steam bubbles from the film layer was also correlated for the experiments.

  • PDF

산화 구리표면에서 액적의 막비등에 관한 실험적 연구 (Experimental Study on Film Boiling of Liquid Droplets on Oxidized Copper Surface)

  • 김영찬
    • 한국분무공학회지
    • /
    • 제25권2호
    • /
    • pp.68-73
    • /
    • 2020
  • In the present study, experiments on the film boiling of liquid droplets on oxidized copper surface was conducted. The shape of pure water droplets was observed, and the evaporation rate of them was measured during the film boiling evaporation process. The droplet of initial volume 16 ~ 30 µl was applied onto the oxidized copper surface heated up to 300 ~ 500℃, then the shape of the droplet was analyzed during the film boiling evaporation. Experimental results showed that there was good correlation between dimensionless volume and dimensionless time. However, a significant difference in evaporation rate for small and large droplets discussed in previous study was not found.

수직관내 미포화수의 강제대류 천이비등에 대한 역학적 모델 (A Mechanistic Model for Forced Convective Transition Boiling of Subcooled Water in Vertical Tubes)

  • Lee, Kwang-Won;Baik, Se-Jun;Han, Sang-Good;Joo, Kyung-Oin;Yang, Jae-Young
    • Nuclear Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.503-517
    • /
    • 1995
  • 강제대류 천이비등 열유속을 보다 실제 적으로 예측하기 위한 역학적 모델을 개발하였다. 이 모델은 가열된 벽면 근처를 어떤 기포기둥(Vapor Blanket)이 통과할 때 일어나는 다단계 비등과정 즉, 임계 기포기둥의 형성, 기포기둥밑의 미소액막(Macrolayer)의 기화 및 고갈, 그리고 얇은 기체막에서 일어나는 불안정한 막비등과정에 기초하였다. 핵비등이탈점 (DNB )과 막비등이탈점 (DFB)사이의 천이비등 곡선상의 열유속은 임계 기포기둥이 주어진 벽면을 통과할 동안 상기한 각 비등과정의 지속 시간비(Time Fraction)를 각 비등열유속에 곱한 후 그것을 합하여 정량화하였다. 이 모델의 예측치를 현재까지 발표된 문헌들에 나타난 실험치와 비교한 결과, 본 모델은 저건도 및 10 bar 근처의 고압조건의 실험치를 잘예측하는 것으로 나타났다.

  • PDF

수평 과냉 . 난류액막류의 막비등 열전달에 관한 연구 (Study on Film-Boiling Heat Transfer of Subcooled Turbulent Liquid Film Flow on Horizontal Plate)

  • 김영찬;서태원
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.835-842
    • /
    • 2000
  • Film boiling heat transfer of the subcooled turbulent liquid film flow on a horizontal plate was investigated by theoretical and experimental studies. In the theoretical analysis, by solving the integral energy and momentum equations analytically, some generalized expressions for Nusselt number was deduced. Next, by comparing the deduced equations with the experimental data on the turbulent film boiling heat transfer of the subcooled thin liquid film flow, the semi-empirical relation between the Nusselt number based on the modified heat transfer coefficient and the Reynolds number was obtained. The correlating equation was very similar to that of the turbulent heat transfer in a single phase flow, and it was found that the heat transfer was dissipated to increase the liquid temperature.

  • PDF

물-공기 혼합분무에 의한 고온 강판 냉각에 대한 연구 (I) -막비등 열전달에 대한 공기질량유속의 영향- (A Study on Cooling of Hot Steel Surface by Water-Air Mixed Spray(I) -The Effect of Air Mass Flux on Film Boiling Heat Transfer-)

  • 이필종;진성태;이승홍
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.247-255
    • /
    • 2004
  • The cooling characteristic of water-air mixed spray for high water mass flux is not well defined, compared to that of highly pressurized spray. A series of research program was planned to develop the boiling correlation for whole temperature range in case of water-air mixed spray with high water mass flux. The cooling experiments of hot steel surface with initial temperature of 820$^{\circ}C$ were conducted in unsteady state with relatively high water mass flux. A computer program was developed to calculate the heat flux inversely from measured data by three inserted thermocouples. Finally the effects of water and air mass flux on the averaged film boiling heat flux and wetting temperature were studied. In this 1st report, it is found that the boiling curve was similar to that of highly pressurized spray and the decreased slope of heat flux in film boiling region with respect to surface temperature became steep by increasing air mass flux. Also it is shown that, by increasing air mass flux, the averaged heat flux in film boiling region was increased, and then saturated and the wetting temperature was increased, and then decreased. Finally when the heat flux in film boiling region is compared with that of highly pressurized spray, it is known that the cooling is improved by introducing air up to 60%.