• 제목/요약/키워드: Filling time

검색결과 798건 처리시간 0.025초

유리인서트 사출금형 설계를 위한 사출성형 및 구조해석 (Injection molding and structure analysis for design of glass insert injection mold)

  • 문영배;고보선;정영득
    • Design & Manufacturing
    • /
    • 제2권3호
    • /
    • pp.6-9
    • /
    • 2008
  • This paper describes the process of structure analysis and injection molding analysis to manufacture the forming injection dies for huge glass insert. Factors such as filling time, filling pressure, material temperature, shrinkage, warpage were investigated by using the analysis software, Moldflow. Runner system and cavity structure were designed and manufactured through the results of deformation analysis data for glass insert. Filling time and filling pressure were analyzed in 3.756sec and 43.37MPa.

  • PDF

VaRTM과 VAP 공정의 수지 충진실험 및 해석에 관한 연구 (A study on Resin Filling Analysis and Experiment by VAP and VaRTM Processes)

  • 윤동환;서경호;권유정;최진호
    • Composites Research
    • /
    • 제36권5호
    • /
    • pp.310-314
    • /
    • 2023
  • VaRTM(Vacuum assisted resin transfer molding)과 VAP(Vacuum assisted process) 공정은 RTM(Resin transfer modling) 공정의 한 종류로서, 대형구조물을 저가에 제작할 수 있는 대표적인 탈 오토클레이브(OOA, Out of Autoclave) 공정이다. 본 논문에서는 VaRTM과 VAP 공정을 상호 비교하기 위하여 수지 충진시험을 진행하였으며, 충진과정과 치수 안정성 등을 상호 비교하였다. 또한, 충진과정을 모사할 수 있는 해석기법을 개발하였으며, 유전센서를 사용하여 수지의 유동선단을 검출하여 이를 해석결과와 상호 비교하였다. 수지 충진시험 결과, 복합재 평판의 총 충진시간은 VAP공정은 48분, VaRTM 공정은 145분으로 측정되어, VAP 공정에 의한 충진시간이 VaRTM 대비 약 67% 단축되었으며, VAP공정이 VaRTM 공정에 비해 복합재 평판의 두께조절능력과 균일도가 우수함을 확인하였다.

다수 캐비티를 갖는 핫러너 금형에서의 균형충전을 위한 자동제어시스템 (A Closed-loop-control System for Filling Balance in the Hot Runner Mold with Multi-Cavities)

  • 장민규;조일규;이옥성;정영득
    • Design & Manufacturing
    • /
    • 제9권1호
    • /
    • pp.23-26
    • /
    • 2015
  • For mass production of plastics, injection molds have multi-cavities. However, filling imbalance between cavity to cavity always has occurred in multi-cavities mold, and this has caused low quality of plastics part. In this study, the closed-loop-control system which can control temperature of hot manifold and nozzle in hot runner mold for filling balance has been suggested, and a series of experiment about difference of filling time and weight in cavity-to-cavity was conducted. As a result of using closed-loop-control system, a remarkable improvement in reducing filling imbalance was confirmed.

  • PDF

다수 캐비티를 갖는 3매 구성형 사출금형에서의 충전 불균형 (Filling Imbalance in 3 Plate Type Injection Molds with Multi-Cavity)

  • 제덕근;정영득
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.752-755
    • /
    • 2003
  • Injection molding is the one of the most important processes for mass production of plastic parts. Usually Injection molds for mass production are constituted to multi-cavity runner system to manufacture the more parts at a time. To uniformly fill to each cavity, multi-cavity molds are designed to geometrically balanced runner system. However. in practice this is not the case. The previous studies by Beaumount at.[2] reported that filling imbalance occurred by thermal unbalance on the mold and viscosity variation of resins and so on. In this study, we conducted experiments in order to know the causes or filling imbalance for 3 plate type mold with 8 cavities. We presented a new so called 4BF mold(4plate Type Balanced Filling Mold) to improve filling balance. We conducted a experimental injection molding to verify a efficiency of the 4BF mold. In the results of the experiment, We could confirmed the possibility of the 4BF mold.

  • PDF

용탕유동과 응고를 고려한 주조공정의 유한요소해석

  • 윤석일;김용환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.620-625
    • /
    • 1995
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting processes consists of mold filling and solifification. In order to investigate the effects of process variables and to predict the defects, both filling and solidiffication process were simulated simultaneously. At filling process, especiallywe consider thermal coupling to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simulation of the actual casting processes. At mold filling process, Lagrangian-type finite element method with automatic remashing scheme was used to find the material flow. To avoid numerical instability in low viscous fluid, a perturbation method with artificial viscosity is adopted. At solififfication process, enthalpy-based finite element method was used to solve the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidiffication time, position of solidus line, liquidus line and thermal residual stress are studied. Finite element tools developed in this study will be used process design of casting process and maybe basic structure for total CAE system of castigs which will be constructed afterward.

가솔린휘발가스 제거를 위한 퇴비 바이오필터의 체류시간 및 충전깊이의 영향 (Effects of Gas Retention Time and Filling Depth of a Compost Biofilter on Removal of Vapor Phase Gasoline)

  • 남궁완;박준석
    • 유기물자원화
    • /
    • 제8권3호
    • /
    • pp.124-130
    • /
    • 2000
  • 본 연구는 가솔린 휘발가스를 퇴비 바이오필터로 처리시 공정조절 인자인 체류시간과 충전깊이의 영향을 살펴보고 공정개선방안을 제시하고자 실시하였다. 체류시간을 4, 10, 그리고 20분으로 변화하여 실시한 결과 TPH의 효율적 제거를 위해서는 10분이상의 EBRT가 요구되었으며 $40g/m^3$(충전물질)/hr 미만의 부하로 운전하는 것이 효과적이었다. BTEX는 체류시간 4분에서는 부하량이 약 $1.5g/m^3$(충전물질)/hr 이상으로 증가하자 더 이상 제거 능력이 증가하지 않았으며, 체류시간 10분에서는 약 $5.3g/m^3$(충전물질)/hr의 부하량에서 $4.5g/m^3$(충전물질)/hr 이상이 제거되었다. 이로써 안정적인 제거를 위해서는 BTEX도 10분 이상의 체류시간이 필요하였다. 충전깊이는 25, 50, 75, 그리고 100cm로 하였다. TPH 제거량을 증가시키기 위해서는 단순히 충전깊이를 증가시키는 것보다 가스체류시간 및 유입부하량 등 다른 공정인자들을 제어하는 것이 더욱 효과적이었다. BTEX의 경우에는 다른 공정인자의 조절도 중요하지만 충전깊이를 1m 정도로 하면 다른 공정인자의 조절에 큰 어려움 없이도 제거효율을 향상시킬 수 있을 것이다.

  • PDF

자동 충진 공정을 이용한 쾌속 제작 공정 개발 (Development of Rapid Manufacturing Process by Machining with Automatic Filling)

  • 신보성;양동열;최두선;이응숙;황경현
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.174-178
    • /
    • 2001
  • In order to reduce the lead-time and cost, recently the technology of rapid protoyping and manufacturing(RPM)has been widely used. Machining process is still considered as one of the effective RPM methods that have been developed and currently available in the industry. It also offers practical advantages such as precision and versatility. Some considerations are still required during the machining process. One of the most important points is fixturing. There should be an effective method of fixturing since the fixturing time depends on the complexity of geometry of the part to be machined. In this paper, the rapid manufacturing process has been developed combining machining with automatic filling. The proposed fixturing technique using automatic filling can be widely applicable to free surface type of product such as a fan. In the filling stage, remeltable material is chosen for the filling process. An automatic set-up device attachable to the table of the machine has also been developed. The device ensures the quality during a series of machining operations. This proposed process has shown to be a useful method to manufacture the required products with the reduced the response-time and cost.

  • PDF

고속가공에 의한 쾌속제작용 자동충진 공정개발 (Development of Automatic Filling Process for Rapid Manufacturing by High-speed Machining Process)

  • 신보성;양동열;최두선;이응숙;제태진;김기돈;이종현;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.28-31
    • /
    • 2001
  • Recently, in order to satisfy the consumer's demand the life cycle and the lead-time of a product is to be shortened. It is thus important to reduce the time and cost in manufacturing trial products. Several techniques have been developed and successfully commercialized in the market RPM(Rapid Prototyping and Manufacturing). However, most commercial systems currently use resins or waxes as the raw materials. So, the limited mechanical strength for functional testing is regarded as an obstacle towards broader application of rapid prototyping techniques. To overcome this problems, high-speed machining technology is being investigated worldwide for rapid manufacturing and even for direct rapid tooling application. In this paper, some fundamental experiments and analyses are carried out to obtain the filling time, materials, method, and process parameters for HisRP process. HisRP is a combination process using high-speed machining technology with automatic filling. In filling process, Bi58-Sn alloy is chosen because of the properties of los-melting point, low coefficient of thermal expansion and enviromental friendship. Also the use of filling wire is of advantage in term of simple and flexible mechanism. Then the rapid manufacturing product, for example a skull, is machined for aluminum material by HisRP process with an automatic set-up device of 4-faces machining.

  • PDF

일부 도시 초·중등 학생들의 재료별 영구치 충전율 변화 (Trend change of dental filling materials for permanent teeth of primary and middle school children in a city)

  • 공욱성;김철신
    • 대한치과의사협회지
    • /
    • 제55권5호
    • /
    • pp.339-350
    • /
    • 2017
  • The aim of the study was to analyze the distribution of dental filling materials for carious permanent teeth of school children in a city. The study was designed as time-serial study, using the data of the dental survey for children aged 8-, 10- and 12-year children living in Gimhae city. The samples were selected by stratified clusters sampling. The number of surveyed samples in depth-analysis for types of dental filling materials were 567 in 2009 and 331 in 2013, respectively. They had dental restorations on one or more teeth. The changing pattern of used dental filling materials was analyzed between 2009 and 2013. Statistical analysis was conducted according to variables related to dental filling material type; DMFT and DMFS index, number of fissure sealed teeth and surface and surveyed year. Amalgam filling rate decreased from 27.9% in 2009 to 18.8% in 2013, while filling rate of tooth-colored materials increased from 56.1% in 2009 and 68.9% in 2013. Amalgam filling rate was a negative correlation with filling rate of tooth-colored materials or gold and number of fissure sealed teeth and a positive correlation with DMFT index. Filling rate of tooth-colored materials was a negative correlation with filling rate of amalgam or gold and DMFT index and a positive correlation with number of fissure sealed teeth. The light-curing composite resin should be included in the reimbursement range of National Health Insurance to solve an inequity of dental health care services.

  • PDF

스트레인 게이지를 이용한 적층방법에 따른 복합레진의 중합수축에 관한 연구 (A STUDY OF POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN ACCORDING TO FILLING METHODS USING STRAIN GAUGE)

  • 김응학;김종수;유승훈
    • 대한소아치과학회지
    • /
    • 제35권1호
    • /
    • pp.18-29
    • /
    • 2008
  • 본 연구는 복합레진 적층방법에 따른 복합레진의 수축양상을 스트레인 게이지를 이용하여 비교 평가하고자 하였다. 사용된 광중합기의 광원은 light-emitting diode(LED)와 plasma arc lamp(PAL)이었으며, 복합레진은 Filtek $Z350^{TM}$를 사용하였다. 교정 치료를 목적으로 발거된 60개의 소구치를 대상으로 하여, 교합면에 와동을 형성하고 일회충전법, 수평적층법, 사면적층법으로 나누어 복합레진을 충전하여 치면에 발생된 strain과 응력을 측정하였고, 법랑질 표면에 시편을 부착하여 동일한 적층방법으로 충전한 후 전단결합강도를 측정한 결과 다음과 같은 결론을 얻었다. 1. Strain의 변화를 살펴보면, LED와 PAL 조사군 모두 와동의 협설면에서는 주로 팽창이 일어났다가 시간이 지남에 따라 서서히 수축하는 양상을 보여주었다. 2. 와동의 근원심면에서는 팽창과 수축이 반복적으로 나타나면서 서서히 수축량이 증가하였다. 3. LED와 PAL 조사군 모두 적층방법 간의 응력 차이는 없었다(p>0.05). 4. LED 및 PAL 조사군 간의 응력 차이는 협면에서만 존재하였다(p<0.05). 5. 전단결합강도 측정 결과 LED 군에서는 사면적층법이 일회충전법, 수평적층법 보다 유의하게 낮게 나타났으나(p<0.05), PAL 광조사군에서는 유의차가 없었다(p>0.05). 6. 각 치면에 발생된 응력은 전단결합강도보다 낮았다(p<0.05).

  • PDF