• Title/Summary/Keyword: Filling limitations

Search Result 35, Processing Time 0.021 seconds

Development of an implicit filling algorithm (암시적 방법을 이용한 충전 알고리즘의 개발)

  • Im, Ik-Tae;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.104-112
    • /
    • 1998
  • The mold filling process has been a central issue in the development of numerical methods to solve the casting processes. A mold filling which is inherently transient free surface fluid flow, is important because the quality of casting highly depends on such phenomenon, Most of the existing numerical schemes to solve mold filling process have severe limitations in time step restrictions or Courant criteria since explicit time integration is used. Therefore, a large computation time is required to analyze casting processes. In this study, the well known SOLA-VOF method has been modified implicitly to simulate the mold filling process. Solutions to example filling problems show that the proposed method is more efficient in computation time than the original SOLA -VOF method.

A micro-computed tomographic study of remaining filling materials of two bioceramic sealers and epoxy resin sealer after retreatment

  • Kim, KyungJae;Kim, Da Vin;Kim, Sin-Young;Yang, SungEun
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.2
    • /
    • pp.18.1-18.9
    • /
    • 2019
  • Objective: This study evaluated the presence of residual root canal filling material after retreatment using micro-computed tomography (micro-CT). Materials and Methods: Extracted human teeth (single- and double-rooted, n = 21/each; C-shaped, n = 15) were prepared with ProFile and randomly assigned to three subgroups for obturation with gutta-percha and three different sealers (EndoSeal MTA, EndoSequence BC sealer, and AH Plus). After 10 days, the filling material was removed and the root canals were instrumented one size up from the previous master apical file size. The teeth were scanned using micro-CT before and after retreatment. The percentage of remaining filling material after retreatment was calculated at the coronal, middle, and apical thirds. Data were analyzed using the Kruskal-Wallis test and Mann-Whitney U test with Bonferroni post hoc correction. Results: The tested sealers showed no significant differences in the percentage of remaining filling material in single- and double-rooted teeth, although EndoSeal MTA showed the highest value in C-shaped roots (p < 0.05). The percentage of remaining filling material of AH Plus and EndoSeal MTA was significantly higher in C-shaped roots than in single- or double-roots (p < 0.05), while that of BC sealer was similar across all root types. EndoSeal MTA showed the highest values at the apical thirds of single- and double-roots (p < 0.05); otherwise, no significant differences were observed among the coronal, middle, and apical thirds. Conclusions: Within the limitations of this study, a large amount of EndoSeal MTA remained after retreatment, especially in C-shaped root canals.

Compaction techniques and construction parameters of loess as filling material

  • Hu, Chang-Ming;Wang, Xue-Yan;Mei, Yuan;Yuan, Yi-Li;Zhang, Shan-Shan
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1143-1151
    • /
    • 2018
  • Loess often causes problems when used as a filling material in the construction of foundations. Therefore, the compaction technique, shear behavior, and bearing capacity of a filled foundation should be carefully considered. A series of tests was performed in this study to obtain effective compaction techniques and construction parameters. The results indicated that loess is strongly sensitive to water. Thus, the soil moisture content should be kept within 12%-14% when it is used as a filling material. The vibrating-dynamic combination compaction technique is effective and has fewer limitations than other methods. In addition, the shear strength of the compacted loess was found to increase linearly with the degree of compaction, and the soil's compressibility decreased rapidly with an increase in the degree of compaction when the degree of compaction was less than 95%. Finally, the characteristic value of the bearing capacity increased with an increase in the degree of compaction in a ladder-type way when the degree of compaction was within 92%-95%. Based on the test data, this paper could be used as a reference in the selection of construction designs in similar engineering projects.

A Finite Element Analysis of Thixoforging Process by using Arbitrarily Shaped Dies (임의 형상의 다이를 이용한 반용융 단조 공정의 유한요소해석)

  • Kang, Chung-Gil;Kim, Nam-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.123-134
    • /
    • 1999
  • A new forming technology has been developed to fabricate near-net shape components by using aluminum alloys with globular microstructure. The estimations of filling characteristic in the forging simulation with arbitrarily shaped dies of SSM are calculated by finite element method with proposed algorithm. The proposed model and various boundary conditions for arbitrarily shaped die are investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation processes with arbitrarily shaped dies are performed on the isothermal conditions and axisymmetric problems. To analyze the forging process simulation with SSM, new stress-strain relationship for semi-solid behaviour is described, and forging the liquid flow. Furthermore, For the purpose of getting net shape of SSM, it is important to be obtain a solid fraction in forging process with arbitrarily shaped dies. To produce a automotive part which have good mechanical properties, the filling pattern in accordance with die velocity and solid fraction distribution has to be estimated for arbitrarily shaped die.

  • PDF

Numerical Analysis on Semi-Solid Forging and Casting Process of Aluminum Alloys (알루미늄합금의 반용융 단조 및 주조공정에 관한 수치해석)

  • 강충길;임미동
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.239-249
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can vary from dendritic to globular. To optimal net shape forging of semi-solid materials, it is important to investigate for filling phenomena in forging process of arbitrarily shaped dies. To produce a automotive part which has good mechanical property, the filling pattern according to die velocity and solid fraction distribution has to be estimated for arbitrarily shaped dies. Therefore, the estimation of filling characteristic in the forging simulation with arbitrarily shaped dies of semi-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for arbitrarily shaped dies is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process with arbitrarily shaped dies is performed to the isothermal conditions of two dimensional problems. To analysis of forging process by using semi-solid materials, a new stress-strain relationship is described, and forging analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for forging force and filling limitations will be compared to experimental data. The filling simulation of simple products performed with the uniform billet temperature(584$^{\circ}C$) from the induction heating by the commercial package MAGMAsoft. The initial step of computation is the touching of semi-solid material with the end of die gate and the initial concept of proposed system just fit with the capability of MAGMAsoft.

  • PDF

Source-sink Relationships of Soybean as Influenced by Drought Stress during the Pod and Seed-developing Stage

  • Shin Seong-Hyu;Park Keum-Yong;Shin Sang-Ouk;Lim Sea-Gyu;Ha Tae-Joung;Kim Do-Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.310-317
    • /
    • 2006
  • This study was conducted to investigate the influence of drought stress during the pod developing and seed filling stage on source-sink relationships of soybean (Glycine max). Drought treatments were imposed by withholding water at the full-pod stage, 19 days after flowering, and then limited watering was relieved at 15 days after the initiation of drought treatment. Soybean seed yield was reduced by 39% mainly due to decreased pod number under drought stress, but the 100-seed weight was relatively less reduced. In spite of the 15-day drought during the full-pod stage, soybean produced good seeds showing similar l00-seed weight, protein, starch and soluble sugar content to those from the well-watered. Although drought during the full-pod stage caused source limitations; i.e. accelerated leaf senescence and reduced leaf soluble sugars, it did not cause limitations of other source characteristics such as SGR and leaf starch level. This is because the reduction in size of sinks, such as pod and seed abortions compensated for source limitations, resulting in balanced source-sink as expressed by LAR and the ratio of leaf area to seed dry weight. Drought stress during the pod developing and seed filling stage did not disrupt the source-sink balance

A micro-computed tomographic evaluation of root canal filling with a single gutta-percha cone and calcium silicate sealer

  • Kim, Jong Cheon;Moe, Maung Maung Kyaw;Kim, Sung Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.18.1-18.9
    • /
    • 2020
  • Objectives: The purpose of this study was to evaluate the void of root canal filling over time when a calcium silicate sealer was used in the single gutta-percha cone technique. Materials and Methods: Twenty-four J-shaped simulated root canals and twenty-four palatal root canals from extracted human maxillary molars were instrumented with ProFile Ni-Ti rotary instruments up to size 35/0.06 or size 40/0.06, respectively. Half of the canals were filled with Endoseal MTA and the other half were with AH Plus Jet using the single gutta-percha cone technique. Immediately after and 4 weeks after the root canal filling, the samples were scanned using micro-computed tomography at a resolution of 12.8 ㎛. The scanned images were reconstructed using the NRecon software and the void percentages were calculated using the CTan software, and statistically analyzed by 1-way analysis of variance, paired t-test and Tukey post hoc test. Results: After 4 weeks, there were no significant changes in the void percentages at all levels in both material groups (p > 0.05), except at the apical level of the AH Plus Jet group (p < 0.05) in the simulated root canal showing more void percentage compared to other groups. Immediately after filling the extracted human root canals, the Endoseal MTA group showed significantly less void percentage compared to the AH Plus Jet group (p < 0.05). Conclusions: Under the limitations of this study, the Endoseal MTA does not seem to reduce the voids over time.

Mechanical Behavior of Rib-reinforced Precast Cut-and-cover Tunnels by Large-sized Experiments

  • Gyuphil Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.25-31
    • /
    • 2023
  • Wide tunnels,such as those with high filling, can suffer limited applicability and also reduced structural stability. Therefore, to improve these limitations of precast cut-and-cover tunnel segments, this study proposes rib reinforcement of the vaults of the precast segments. Large-sized experiments assess the effectiveness of the various rib-reinforced precast arch cut-and-cover tunnel structures, and compare them against otherwise similar non-rib-reinforced specimens. The results show that the rib-reinforced precast cut-and-cover segments are suitable for building wide tunnels with high filling.

Development of Rapid Prototyping System using High Speed Machining of Plastics (합성수지의 고속 절삭을 이용한 쾌속조형 시스템)

  • Jung, Tae-Sung;Choi, In-Hugh;Lee, Dong-Yoon;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.5-12
    • /
    • 2003
  • In order to reduce the lead-time and cost, many useful methods have been applied to rapid prototyping (RP) in recent years. But cutting process is still considered as one of the effective RP methods that have been developed and currently available in the industry. It also offers practical advantages in aspects of precision and versatility. However, traditional 3-axis NC machining has some inherent limitations such as the restriction of tool accessibility and the complex setup. In this work, a new rapid prototyping system with high speed 5-axis machining of plastics has been developed to overcome those limitations. And cutting experiments were conducted to determine the design factors of the system and the cutting conditions of plastics. The architecture of developed system is described in detail and the successful application examples are presented.

  • PDF

DNN-based LTE Signal Propagation Modelling for Positioning Fingerprint DB Generation

  • Kwon, Jae Uk;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.55-66
    • /
    • 2021
  • In this paper, we propose a signal propagation modeling technique for generating a positioning fingerprint DB based on Long Term Evolution (LTE) signals. When a DB is created based on the location-based signal information collected in an urban area, gaps in the DB due to uncollected areas occur. The spatial interpolation method for filling the gaps has limitations. In addition, the existing gap filling technique through signal propagation modeling does not reflect the signal attenuation characteristics according to directions occurring in urban areas by considering only the signal attenuation characteristics according to distance. To solve this problem, this paper proposes a Deep Neural Network (DNN)-based signal propagation functionalization technique that considers distance and direction together. To verify the performance of this technique, an experiment was conducted in Seocho-gu, Seoul. Based on the acquired signals, signal propagation characteristics were modeled for each method, and Root Mean Squared Errors (RMSE) was calculated using the verification data to perform comparative analysis. As a result, it was shown that the proposed technique is improved by about 4.284 dBm compared to the existing signal propagation model. Through this, it can be confirmed that the DNN-based signal propagation model proposed in this paper is excellent in performance, and it is expected that the positioning performance will be improved based on the fingerprint DB generated through it.