• Title/Summary/Keyword: Fill dams

Search Result 67, Processing Time 0.026 seconds

Cause Analysis of Dam Body piping Failure -Centering on the Example of Seungam Reservoir Failure- (제당 PIPING 결궤 원인분석 - 성암제 붕괴 중심으로 -)

  • Lee, In-Hyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.344-350
    • /
    • 2001
  • Piping is a phenomenon where seeping water progressively erodes or washes away soil particles, leaving large voids (Pipes led to the development of channels) in the soil. Piping failure caused by heave can be expected to occur on the downstream side of a hydraulic structure such as fill dams when the uplift forces of seepage exceed the downward forces due to the submerged weight of the soil. The way to prevent erosion and piping and to reduce damaging uplift pressures is to use a protective filter or to construct cutoff wall/imperious blanket. Therefore, all the hydraulic structures faced/with soil materials should be taken the safety against piping into consideration.

  • PDF

Repair and Reinforcement for Flood Prevention Ability of Fill Dams (필댐의 홍수방어능력평가에 따른 보수.보강 방안 검토)

  • Park, Dae-Kyu;Kwon, Ji-Hye;Kwon, Hyeok-Ki;Bae, Tae-Ho;Ryu, Geun-Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2197-2201
    • /
    • 2008
  • 우리나라의 수문학적 특성을 살펴보면 유로가 짧고 경사가 급하며, 하계에 연강우량의 2/3 이상이 집중하기 때문에 치수적으로 매우 불리한 조건에 처해 있다. 수문학적으로 연최대 유량 대 연최소 유량의 비인 하상계수(河狀係數)를 외국하천의 경우와 비교해 보면 우리나라 하천의 경우가 수십 배에 달해 매년 홍수피해에 노출되어 있음을 알 수 있다. 특히 필댐의 경우 월류에 매우 불안정하므로 홍수방어능력의 중요성은 더욱 커진다. 따라서 본 연구에서 홍수방어능력이 부족한 필댐을 통하여 그 원인과 보수 보강 대책에 대하여 다양한 방법으로 검토하고자 한다.

  • PDF

A Study on Reconstruction Models of Side-channel Spillway for Discharge Capacity Improvement (측수로형 여수로의 홍수배제능력증대를 위한 월류부 개축방안에 관한 연구)

  • Park, Sae-Hoon;Moon, Young-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.9-18
    • /
    • 2007
  • The small and medium sized dams have the fill dam type of a lot of occasions, which are often weak in cases of major floods. For this reason, although a countermeasure is in great need, due to the importance of the facilities and financial situations, no direct safety measures have been taken. In this study, in order to minimize construction expenditure for practical safety measures in cases of major floods, the overflow section of spillway has been analyzed focusing on how the overflow capacity will increase in the case of partially rebuilding a part of the overflow section of spillway favorable for hydraulic conditions. The labyrinth weir and movable weir was chosen for reconstruction models of the overflow section. Moreover, for analyzing the after-effects of the reconstruction, a small scale dam was temporarily chosen for various experiments such as the hydraulic model testing and the three dimension numerical evaluation through the use of Flow-3D.

Recent Techniques for Design and Construction of CFRD (CFRD의 최근 설계ㆍ시공기술 동향)

  • Park Dong-Soon;Kim Hyoung-Soo;Lim Jeong-Yeul
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.77-86
    • /
    • 2005
  • CFRD(Concrete Faced Rockfill Dam) is in widespread use because this type of dam has superior characteristics in structural, material aspects comparing with earth cored rockfill dam. On this paper, up-to-date re-searches and techniques are summed up to be available for future needs in design and construction of CFRD. For example, such items as embankment using weak rock, experience of sand-gravel fill CFRD, connecting slab applied between plinth and face slab, raising experience of old dm, inverse filtration problem, environmental friendly zone, thickness and reinforcing of face slab, alluvial foundation treatment, and curb element method, are summarized for understanding of related engineers.

Risk Analysis Method for Deriving Priorities for Detailed Inspection of Small and Medium-sized Fill Dam (중소형 필댐의 정밀점검 우선순위 도출을 위한 간이 위험도 분석 방법)

  • Kim, Jinyoung;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.10
    • /
    • pp.11-16
    • /
    • 2020
  • Korea's agricultural reservoir is one of the country's major infrastructures and plays an important role in people's lives. However, aging reservoirs are a risk for life and property. Currently, large and small dams and reservoirs have been constructed nationwide for more than 40 years of aging. Dams and reservoirs built nationwide are managed by various institutions. Therefore, it is difficult to manage all dams and reservoirs due to cost and time. Managers in the field with less management personnel and lack of expertise should be able to quickly identify risk factors for multiple reservoirs. In this study, risk factors such as seepage, leakage, settlement slide, crack and erosion were selected. To assess the risk of the items, we used the analytical hierarchical process (AHP), one of the Multi-Criteria Decision Making (MCDM) methods. The analysis showed that seepage has the greatest impact on reservoir collapse. It is judged that the priority of detailed diagnosis can be determined by evaluating the risk of dam reservoir collapse in a convenient way in advance using the calculated weight.

Analysis of temperature monitoring data for leakage detection of earth dam (흙댐의 누수구역 판별을 위한 온도 모니터링 자료의 해석)

  • Oh, Seok-Hoon;Seo, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.39-45
    • /
    • 2008
  • Temperature variation according to space and time on the inner parts of engineering constructions(e.g.: dam, slope) can be a basic information for diagnosing their safety problem. In general, as constructions become superannuated, structural deformation(e.g.: cracks, defects) could be occurred by various factors. Seepage or leakage of water through these cracks or defects in old dams will directly cause temperature anomaly. Groundwater level also can be easily observed by abrupt change of temperature on the level. This study shows that the position of seepage or leakage in dam body can be detected by multi-channel temperature monitoring using thermal line sensor. For this, diverse temperature monitoring experiments for a leakage physical model were performed in the laboratory. In field application of an old earth fill dam, temperature variations for water depth and for inner parts of boreholes located at downstream slope were measured. Temperature monitoring results for a long time at the bottom of downstream slope of the dam showed the possibility that temperature monitoring can provide the synthetic information about flowing path and quantity of seepage of leakage in dam body.

  • PDF

Improvement of Quantitative Condition Assessment Criteria for Reservoir Embankment Safety Inspection Considering Characteristics of Small Reservoirs in Korea (소규모 저수지의 특성을 고려한 제체 안전진단의 정량적 상태평가 기준 개선)

  • Jeon, Geonyeong;Bang, Donseok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.27-38
    • /
    • 2021
  • The physical condition assessment criteria of fill dam safety inspection are now weakly regulated and inappropriate for small agricultural reservoirs since these criteria have fundamental backgrounds suitable for large-scale dams. This study proposes the degree (critical values) of defects for the quantitative condition assessment of the embankment in order to prepare the condition assessment criteria for a small reservoir with a storage capacity of less than one (1) million cubic meters. The critical values of defects were calculated by applying the method that considers the size ratios based on the dimensional data of reservoirs, and the method of statistical analysis on the measured values of the defect degree which extracted from comprehensive annual reports on reservoir safety inspection. In comparison with the current criteria, the newly proposed critical values for each condition assessment item of the reservoir embankment are presented in paragraphs 4 and 6 of the conclusion. In addition, this study presents a method of displaying geometric figures to clarify the rating classification for condition assessment items with the two defect indicators.

Evaluation of along-channel sediment flux gradients in an anthropocene estuary with an estuarine dam

  • Figueroa, Steven M.;Lee, Guan-hong;Chang, Jongwi;Schieder, Nathalie W.;Kim, Kyeongman;Kim, Seok-Yun;Son, Minwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.86-86
    • /
    • 2022
  • While estuarine dams can develop freshwater resources and block the salt intrusion, they can result in increased sediment deposition in the estuary. The mechanism of increased sediment deposition in an estuary with an estuary dam is not well understood. To fill this knowledge gap, 7 ADCP measurements of flow and suspended sediment concentration (SSC) were collected along-channel in an estuary with an estuarine dam over a neap-spring cycle. Flow and SSC were used to calculate the sediment flux and sediment flux gradients. The results indicated that the cumulative sediment fluxes at all stations were directed landward. The along-channel sediment flux gradient was negative, which indicated deposition along the channel. The landward mean-flow fluxes were dominant in the deep portion of the channel near the estuary mouth, whereas landward correlation fluxes were dominant in the shallow portion of the channel near the estuarine dam. The tides were the dominant forcing driving the sediment fluxes throughout the estuary.

  • PDF

Assessing the Stability of Fill Dams by Relationship between Water Level and Porewater Pressure (저수위-간극수압의 상관관계를 통한 필댐 안정성 평가)

  • Kang, Gichun;Kim, Donghwan;Yoon, Sukmin;Jang, Bong Seok;Kim, Jiseong
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.5-15
    • /
    • 2020
  • This study deals with the use of porewater pressure transducers to evaluate the stability of a fill dam through the correlation between the porewater pressure and water level. As a result of performing principal component analysis on a total of eight porewater pressure transducers installed in the fill dam, they were distributed into three groups. It was found to be distributed as internal, external, and top based on seepage line in the dam body. The correlation coefficient between porewater pressures and water level in group A located inside the seepage line indicated 0.94 to 1.00 and they are showing a strong positive linear relationships. It indicates that maintenance of the dam is required by the porewater pressure transducers of the group A. In addition, a linear regression analysis was performed with the determination coefficients of the group A of 0.89 to 0.99. It was found that the pore water pressure can be predicted and the stability of the dam can be evaluated by comparing it with the currently measured values when the water level is fixed as an explanatory variable.

Effect of Characteristics of Sand/Gravel and Rock Materials on Behavior of Dam during Construction and Impounding (사력재와 석산재의 특성이 축조와 담수시 댐체 거동에 미치는 영향)

  • Seo, Min-Woo;Cho, Sung-Eun;Shin, Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.45-55
    • /
    • 2008
  • CFRD (Concrete Faced Rockfill Dam) has been world-widely constructed due to a lot of advantages which it has compared with rockfill dam and recently, sand/gravel materials, Instead of crushed rock materials, are also utilized as a main rockfill material to overcome geological and environmental problems. In Korea, two dams using sand/gravel materials as a main fill material were designed and are being constructed. In this research, the strength and deformation characteristics of the rockfill and sand/gravel materials taken from 2 dam sites were tested by using a laboratory large triaxial testing equipment for a total of 7 cases. From the results of large triaxial and compaction tests, it was observed that two kinds of materials show a little different compaction, shear strenght and deformation characteristics. It could be expected that the shear strength of sand/gravel material was not disadvantageous compared with that of rockfill materials, however, there was some difference between two materials with respect to behavior characteristics. On the other hand, smaller displacements were observed from numerical analysis based on the data from a large triaxial test when the sand/gravel is used as a main fill material compared with the case when the crushed rock material is used as a main fill material. Finally, in spite of a little different shear strength and behavior characteristic between two materials, it was concluded that it will not lead to a significant problem when the sand/gravel material is used as a main rockfill material.