• Title/Summary/Keyword: File Storage

Search Result 457, Processing Time 0.025 seconds

A Design for File Access in Storage Class Memory-based Computer Systems (스토리지 클래스 메모리에서의 파일 접근 설계)

  • Park, Sungmin;Won, Youjip;Kang, Sooyong
    • Journal of Digital Contents Society
    • /
    • v.14 no.2
    • /
    • pp.247-254
    • /
    • 2013
  • Storage Class Memory(SCM), such as PRAM, FRAM and MRAM, are expected to be comparable to DRAM in terms of access speed and to Flash memory in terms of capacity in a near future. In this paper, assuming that not only the secondary storage (HDD or Flash memory) but also the primary memory (DRAM) will be replaced by SCM in the future computer systems, we propose an efficient file access framework for the SCM based computer systems. The proposed framework do not assign exclusive area in the SCM to the file system and uses various memory-related techniques, such as unified data access path, zero-copy data read using file mapping, copy-on-write, and multiple page pre-faulting for file management. Based on the preliminary experimental results, we could conclude that the proposed framework can be an efficient baseline for designing a new operating system for the SCM based computer systems.

A Design of a Flash Memory Swapping File System using LFM (LFM 기법을 이용한 플래시 메모리 스와핑 파일 시스템 설계)

  • Han, Dae-Man;Koo, Yong-Wan
    • Journal of Internet Computing and Services
    • /
    • v.6 no.4
    • /
    • pp.47-58
    • /
    • 2005
  • There are two major type of flash memory products, namely, NAND-type and NOR-type flash memory. NOR-type flash memory is generally deployed as ROM BIOS code storage because if offers Byte I/O and fast read operation. However, NOR-type flash memory is more expensive than NAND-type flash memory in terms of the cost per byte ratio, and hence NAND type flash memory is more widely used as large data storage such as embedded Linux file systems. In this paper, we designed an efficient flash memory file system based an Embedded system and presented to make up for reduced to Swapping a weak System Performance to flash file system using NAND-type flash memory, then proposed Swapping algorithm insured to an Execution time. Based on Implementation and simulation studies, Then, We improved performance bases on NAND-type flash memory to the requirement of the embedded system.

  • PDF

A Clustering File Backup Server Using Multi-level De-duplication (다단계 중복 제거 기법을 이용한 클러스터 기반 파일 백업 서버)

  • Ko, Young-Woong;Jung, Ho-Min;Kim, Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.7
    • /
    • pp.657-668
    • /
    • 2008
  • Traditional off-the-shelf file server has several potential drawbacks to store data blocks. A first drawback is a lack of practical de-duplication consideration for storing data blocks, which leads to worse storage capacity waste. Second drawback is the requirement for high performance computer system for processing large data blocks. To address these problems, this paper proposes a clustering backup system that exploits file fingerprinting mechanism for block-level de-duplication. Our approach differs from the traditional file server systems in two ways. First, we avoid the data redundancy by multi-level file fingerprints technology which enables us to use storage capacity efficiently. Second, we applied a cluster technology to I/O subsystem, which effectively reduces data I/O time and network bandwidth usage. Experimental results show that the requirement for storage capacity and the I/O performance is noticeably improved.

Metadata Management of a SAN-Based Linux Cluster File System (SAN 기반 리눅스 클러스터 파일 시스템을 위한 메타데이터 관리)

  • Kim, Shin-Woo;Park, Sung-Eun;Lee, Yong-Kyu;Kim, Gyoung-Bae;Shin, Bum-Joo
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.367-374
    • /
    • 2001
  • Recently, LINUX cluster file systems based on the storage area network (SAN) have been developed. In those systems, without using a central file server, multiple clients sharing the whole disk storage through Fibre Channel can freely access disk storage and act as file servers. Accordingly, they can offer advantages such as availability, load balancing, and scalability. In this paper, we describe metadata management schemes designed for a new SAN-based LINUX cluster file system. First, we present a new inode structure which is better than previous ones in disk block access time. Second, a new directory structure which uses extendible hashing is described. Third, we describe a novel scheme to manage free disk blocks, which is suitable for very large file systems. Finally, we present how we handle metadata journaling. Through performance evaluation, we show that our proposed schemes have better performance than previous ones.

  • PDF

The Architecture of the Flash Memory Storage System using Page Delete Information (페이지 삭제정보를 활용하는 플래시 저장장치의 구조)

  • Jung, Ho-Young;Park, Sung-Min;Kang, Soo-Yong;Cha, Jae-Hyuk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.958-962
    • /
    • 2009
  • Flash memory, which replaces hard disk recently, has different physical characteristics with hard disk. For the performance of flash memory based storage system, many researches over OS and file system layers has been doing. In this paper, we propose the architecture of flash memory based storage which uses information of page invalidation when file deletion occurs from upper layer. Also, we evaluate the performance of proposed system. Proposed system effectively increases IO performance by using page invalidation information to block merge and wear leveling algorithms.

Management Method for Private Key File of PKI using Container ID of USB memory (USB 메모리의 컨테이너ID를 이용한 PKI 기반의 개인키 파일의 안전한 관리 방안)

  • Kim, Seon-Joo;Joe, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.10
    • /
    • pp.607-615
    • /
    • 2015
  • Mosts user of internet and smart phone has certificate, and uses it when money transfer, stock trading, on-line shopping, etc. Mosts user stores certificate in a hard disk drive of PC, or the external storage medium. In particular, the certification agencies are encouraged for user to store certificate in external storage media such as USB memory rather than a hard disk drive. User think that the external storage medium is safe, but when it is connect to a PC, certificate may be copied easily, and can be exposed to hackers through malware or pharming site. Moreover, if a hacker knows the user's password, he can use user's certificate without restrictions. In this paper, we suggest secure management scheme of the private key file using a password of the encrypted private key file, and a USB Memory's hardware information. The private key file is protected safely even if the encrypted private key file is copied or exposed by a hacker. Also, if the password of the private key file is exposed, USB Memory's container ID, additional authentication factor keeps the private key file safe. Therefore, suggested scheme can improve the security of the external storage media for certificate.

SBR-k(Sized-base replacement-k) : File Replacement in Data Grid Environments (SBR-k(Sized-based replacement-k) : 데이터 그리드 환경에서 파일 교체)

  • Park, Hong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.57-64
    • /
    • 2008
  • The data grid computing provides geographically distributed storage resources to solve computational problems with large-scale data. Unlike cache replacement policies in virtual memory or web-caching replacement, an optimal file replacement policy for data grids is the one of the important problems by the fact that file size is very large. The traditional file replacement policies such as LRU(Least Recently Used), LCB-K(Least Cost Beneficial based on K), EBR(Economic-based cache replacement), LVCT(Least Value-based on Caching Time) have the problem that they have to predict requests or need additional resources to file replacement. To solve theses problems, this paper propose SBR-k(Sized-based replacement-k) that replaces files based on file size. The proposed policy considers file size to reduce the number of files corresponding to a requested file rather than forecasting the uncertain future for replacement. The results of the simulation show that hit ratio was similar when the cache size was small, but the proposed policy was superior to traditional policies when the cache size was large.

Study on the Digital File Management Behavior of Undergraduate Students according to the Life Cycle of Digital Object (디지털 객체 생애주기에 따른 대학생의 파일관리 행태 연구)

  • Jee, Yoon-Jae;Lee, Hye-Eun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.33 no.1
    • /
    • pp.321-343
    • /
    • 2022
  • This study presents the direction of services and policies for digital file management in universities by identifying undergraduate students' digital file management behavior. The research defined the Life Cycle of Digital Objects. In addition, This research collected data from 154 undergraduate students using an online survey on their file Creation, Storing, Naming, Organizing, and Backup based on the Digital File Management Workflow. Also, an in-depth interview was conducted for 8 students, two for each major in engineering, arts, social science, and humanities. The result showed that students mostly used personal computers as storage media and USB drive as backup media and had their own file Naming and Organizing methods. Furthermore, students' satisfaction with digital file management was high when universities supported software and cloud storage. Therefore, this study suggests that universities need to provide services reflecting the students' digital file management behavior.

Failure Recovery in the Linux Cluster File System SANiqueTM (리눅스 클러스터 화일 시스템 SANiqueTM의 오류 회복 기법)

  • Lee, Gyu-Ung
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.359-366
    • /
    • 2001
  • This paper overviews the design of SANique$^{TM}$ -a shred file system for Linux cluster based on SAN environment. SANique$^{TM}$ has the capability of transferring user data from network-attached SAN disks to client applcations directly without the control of centralized file server system. The paper also presents the characteristics of each SANique$^{TM}$ subsystem: CFM(Cluster File Manager), CVM(Cluster Volume Manager), CLM(Cluster Lock Manager), CBM(Cluster Buffer Manager) and CRM(Cluster Recovery Manager). Under the SANique$^{TM}$ design layout, then, the syndrome of '||'&'||'quot;split-brain'||'&'||'quot; in shared file system environments is described and defined. The work first generalizes and illustrates possible situations in each of which a shared file system environment may split into two or more pieces of separate brain. Finally, the work describes the SANique$^{TM}$ approach to the given "split-brain"problem using SAN disk named "split-brain" and develops the overall recovery procedure of shared file systems.

  • PDF

Design and Implementation of Kernel-Level Split and Merge Operations for Efficient File Transfer in Cyber-Physical System (사이버 물리 시스템에서 효율적인 파일 전송을 위한 커널 레벨 분할 및 결합 연산의 설계와 구현)

  • Park, Hyunchan;Jang, Jun-Hee;Lee, Junseok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.5
    • /
    • pp.249-258
    • /
    • 2019
  • In the cyber-physical system, big data collected from numerous sensors and IoT devices is transferred to the Cloud for processing and analysis. When transferring data to the Cloud, merging data into one single file is more efficient than using the data in the form of split files. However, current merging and splitting operations are performed at the user-level and require many I / O requests to memory and storage devices, which is very inefficient and time-consuming. To solve this problem, this paper proposes kernel-level partitioning and combining operations. At the kernel level, splitting and merging files can be done with very little overhead by modifying the file system metadata. We have designed the proposed algorithm in detail and implemented it in the Linux Ext4 file system. In our experiments with the real Cloud storage system, our technique has achieved a transfer time of up to only 17% compared to the case of transferring split files. It also confirmed that the time required can be reduced by up to 0.5% compared to the existing user-level method.