• 제목/요약/키워드: Filamentous organisms

검색결과 31건 처리시간 0.027초

Mycoplasma pneumoniae의 성장과 형태에 미치는 환경요소적 영향 (Effects of environmental factors on growth and morphology of mycoplasma pneumoniae)

  • Kim, Chi-Kyung
    • 미생물학회지
    • /
    • 제16권3호
    • /
    • pp.131-139
    • /
    • 1978
  • Mycoplasma pneumoniae was examined for growth characteristics and morphology when cultivated in several media supplemented with a variety of sera and under different atmospheric conditions. different formula of the medium as well as different sources of lot numbers of the serum in the same medium exhibited varying effects on growth rate and adherence. When the organisms were cultivated in SSR-2 medium in a normal atmospheric environment or under a facultative anaerobic condition provided with carbon dioxide, they developed filamentous cells with heavy growth, whereas mainly round-shaped cells were produced under strict anaerobic conditions of hydrogen and carbon dioxide. Both morphologies of the organism were transformed by switching the incubation environments. An inverted phasecontrast microscopy using modified petri dishes was excellent to observe single cells and useful to follow the development of the cells. Growth, turbidity, and pneumoniae colonies developed on a solid medium and produced clear when overlaid with sheep blood agar.

  • PDF

Functional Roles of a Putative B' Delta Regulatory Subunit and a Catalytic Subunit of Protein Phosphatase 2A in the Cereal Pathogen Fusarium graminearum

  • Kim, Hee-Kyoung;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • 제28권3호
    • /
    • pp.259-269
    • /
    • 2012
  • Protein phosphatase 2A (PP2A), a family of serine/threonine protein phosphatases, plays an important role in balancing the phosphorylation status of cellular proteins for regulating diverse biological functions in eukaryotic organisms. Despite intensive studies in mammals, limited information on its role is available in filamentous fungi. Here, we investigated the functional roles of genes for a putative B' delta regulatory subunit (FgPP2AR) and a catalytic subunit (FgPP2AC) of PP2A in a filamentous ascomycete, Fusarium graminearum. Molecular characterization of an insertional mutant of this plant pathogenic fungus allowed us to identify the roles of FgPP2AR. Targeted gene replacement and complementation analyses demonstrated that the deletion of FgPP2AR, which was constitutively expressed in all growth stages, caused drastic changes in hyphal growth, conidia morphology/germination, gene expression for mycotoxin production, sexual development and pathogenicity. In particular, overproduction of aberrant cylindrical-shaped conidia is suggestive of arthroconidial induction in the ${\Delta}FgPP2AR$ strain, which has never been described in F. graminearum. In contrast, the ${\Delta}FgPP2AC$ strain was not significantly different from its wild-type progenitor in conidiation, trichothecene gene expression, and pathogenicity; however, it showed reduced hyphal growth and no perithecial formation. The double-deletion ${\Delta}FgPP2AR;{\Delta}FgPP2AC$ strain had more severe defects than single-deletion strains in all examined phenotypes. Taken together, our results indicate that both the putative regulatory and catalytic subunits of PP2A are involved in various cellular processes for fungal development in F. graminearum.

사상성 진균 Aspergillus nidulans에서 아쿠아포린 유전자 aqpA의 분리 및 분석 (Identification and Characterization of the Aquaporin Gene aqpA in a Filamentous Fungus Aspergillus nidulans)

  • 오동순;육함연;한갑훈
    • 미생물학회지
    • /
    • 제47권4호
    • /
    • pp.295-301
    • /
    • 2011
  • 아쿠아포린(aquaporin)은 MIP (Major Intrinsic Protein) 패밀리에 속하는 물 수송 채널(water transport channel) 단백질로 단세포 생물인 박테리아부터 다세포 고등생물인 인간에 이르기까지 다양한 기관계에서 잘 보존되어 있다. 아쿠아포린은 정통아쿠아포린(orthodox aquaporin)과 아쿠아글리세로포린(aquaglyceroporin)으로 구분되는데, 정통아쿠아포린은 주로 세포내의 물 유입 및 수송에 관여하며 아쿠아글리세로포린은 glycerol, polyol, urea를 비롯한 작은 비극성 분자의 수송에 관여하는 것으로 알려져 있다. 최근까지 효모에서 아쿠아포린 기능이 일부 밝혀졌지만 Aspergillus 속을 포함하는 사상성 진균에서는 거의 연구가 되어있지 않은 실정이다. 본 연구에서는 A. nidulans의 유전체 염기서열 정보를 분석하여 하나의 정통아쿠아포린(aqpA)과 네 개의 아쿠아글리세로포린(aqpB-E)을 발견하였다. 이를 바탕으로 aqpA 유전자 결실돌연변이들을 만들어 그 기능을 분석하였다. aqpA 결실돌연변이는 각종 삼투 스트레스(osmotic stress)에서는 표현형의 변화가 거의 관찰되지 않았으며 이는 이들 유전자가 삼투 스트레스에 반응하지 않거나 유전자의 중복성 때문으로 여겨진다. 그러나 항진균제인 fluconazol에 대해서 그 감수성이 적어지는 것이 관찰 되었다. 이는 aqpA 유전자가 삼투스트레스 반응보다 항진균제의 감지에 더 기능을 가지고 있을 수 있음을 시사한다.

Intercellular transport across pit-connections in the filamentous red alga Griffithsia monilis

  • Kim, Gwang Hoon;Nagasato, Chikako;Kwak, Minseok;Lee, Ji Woong;Hong, Chan Young;Klochkova, Tatyana A.;Motomura, Taizo
    • ALGAE
    • /
    • 제37권1호
    • /
    • pp.75-84
    • /
    • 2022
  • Intercellular nutrient and signal transduction are essential to sustaining multicellular organisms and maximizing the benefits of multicellularity. It has long been believed that red algal intercellular transport of macromolecules is prevented by the protein-rich pit plug within pit-connections, the only physical connection between cells. Fluorescein isothiocyanate-dextran and recombinant green fluorescence protein (rGFP) of various molecular sizes were injected into vegetative cells of Griffithsia monilis using a micromanipulator, and intercellular transport of the fluorescent probes was examined. Pit-connections were found to provide intercellular transport of tracers at rates comparable to plasmodesmata in other organisms. The time necessary for the transport to an adjacent cell was dependent on the molecular size and the direction of the transport. Fluorescent dextran of 3 kDa was transported to adjacent cells in 1-2 h after injection and migrated to all cells of the filament within 24 h, but fluorescent dextran of 10-20 kDa took 24 h to transfer to neighboring cells. The migration occurred faster towards adjacent reproductive cells and to apical cells than basally. Fluorescent tracers above 40 kDa and rGFP was not transported to neighboring cells, but accumulated near the pit plug. Our results suggest that pit-connections are conduit for macromolecules between neighboring cells and that these size-specific conduits allow intercellular communication between the vegetative cells of red algae.

우상부의 공동성 폐 병변 (A Case with Single Cavitary Nodule in Right Upper Lung)

  • 최진원;박익수;최완영;신동호;박성수;이정희;전석철;박문향;이중달
    • Tuberculosis and Respiratory Diseases
    • /
    • 제39권2호
    • /
    • pp.199-204
    • /
    • 1992
  • A 46 years old male showed radiologically a single cavitary nodular lesion in right upper lung, which extended to the regional chest wall. This finding has to be made into differential diagnosis of numerous pulmonary diseases including infections such as mycobacterial, fungal or bacterial, granulomatous diseases, and neoplasms. For the definite diagnosis, fine needle aspiration biopsy guided by biplane fluoroscopy was performed. The aspirates contained several sulfur granules, in the center of which many gram positive, filamentous organisms were compactly intermingled. Such a findings was compatible with pulmonary actinomycosis. Now the lesions is cleared out by medical treatment with amoxicillin for 3 months.

  • PDF

전해부상을 고액분리 방법으로 적용한 SBR 공정의 운전 특성 (Operation Characteristics of the SBR Process with Electro-Flotation (EF) as Solids-liquid Separation Method)

  • 박민정;최영균
    • 한국물환경학회지
    • /
    • 제24권3호
    • /
    • pp.340-344
    • /
    • 2008
  • Electro-flotation (EF) was applied to a sequencing batch reactor process (SBR) in order to enhance solids-liquid separation. Solids-liquid separation was good enough in the SBR coupled with EF (EF-SBR) and it was possible to maintain the concentration of mixed liquor suspended solids (MLSS) high in the EF-SBR. Under moderate organic loading condition (COD loading rate: 6 g/day), control SBR (C-SBR) showed similar treatment efficiencies with the EF-SBR. Under high organic loading condition (COD loading rate: 9.6 g/day), the solids-liquid separation in the C-SBR was deteriorated due to proliferation of filamentous bulking organisms at high F/M ratio. However, the EF-SBR was operated stably and with the high MLSS concentration (above 4,000 mg/L) regardless of the organic loading conditions during overall operating period leading to the satisfactory effluent quality. Gas production rate of the electrodes was gradually decreased because of anodic corrosion and scale build-up at the surface of cathode. However it could be partially overcome by use of corrosion-proof electrode material (SUS-316 L) and by periodic current switching between the electrodes.

Effect of AL072, a Novel Anti-Legionella Antibiotic, on Growth and Cell Morphology of Legionella pneumophila

  • Kang, Byeong-Cheol;Park, Jae-Hak;Lee, Yong-Soon;Suh, Jung-Woo;Chang, Jun-Hwan;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권3호
    • /
    • pp.371-375
    • /
    • 1999
  • AL072 is a potent anti-Legionella antibiotic produced by Streptomyces strain AL91. The minimum inhibitory concentration (MIC) of AL072 against Legionella pneumophila was 0.2$\mu$g/ml. Bacterial growth was rapidly inhibited at the dose range between the MIC and 20 times of the MIC when the antibiotic was added at the mid-exponential phase. Ultrastructural changes in L. pneumophila were observed upon treatment with AL072. Under electron microscopical observation, the organisms treated with AL072 exhibited characteristic morphological changes in the cellular outer coat. Also irregular morphological changes, such as the formation of filamentous materials in the cytoplasm, an increase in the size and number of cytoplasmic vacuoles, the extruding of cytoplasmic contents, the formation of spheroplast and ghost cells, and blebbings in the cell wall were observed. Furthermore, immunoelectron microscopical observation of the group treated with the MIC showed that the immune complex attached mainly to the cell wall. The results of these experiments indicate that AL072, like the inhibitors of cell wall synthesis, act selectively on the cell wall of L. pneumophila.

  • PDF

Signal transfduction pathways for infection structure formation in the rice blast fungus, Magnaporthe grisea

  • Lee, Yong-Hwan;Khang, Chang-Hyun
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 제13회 식물생명공학심포지움 New Approaches to Understand Gene Function in Plants and Application to Plant Biotechnology
    • /
    • pp.41-44
    • /
    • 1999
  • Magnaporthe grisea (Hebert) Barr (anamorph: Pyricularia grisea) is a typical heterothallic Ascomycete and the causal agent of rice blast, one of the most destructive diseases on rice (Oryza sativa L.) worldwide. The interactions between cells of the pathogen and those of the host involve a complex of biological influences which can lead to blast disease. The early stages of infection process in particular may be viewed as a sequence of discrete and critical events. These include conidial attachment, gemination, and the formation of an appressorium, a dome-shaped and melanized infection structure. Disruption of this process at any point will result in failure of the pathogen to colonize host tissues. This may offer a new avenue for developing innovative crop protection strategies. To recognize and capture such opportunities, understanding the very bases of the pathogenesis at the cellular and molecular level is prerequisite. Much has been learned about environmental cues and endogenous signaling systems for the early infection-related morphogenesis in M. grisea during last several years. The study of signal transduction system in phytopathogenic filamentous fungi offers distinct advantages over traditional mammalian systems. Mammalian systems often contain multiple copies of important genes active in the same tissue under the same physiological processes. Functional redundancy, alternate gene splicing, and specilized isoforms make defining the role of any single gene difficult. Fungi and animals are closely related kingdoms [3], so inferences between these organisms are often justified. For many genes, fungi frequently possess only a single copy, thus phenotype can be attributed directly to the mutation or deletion of any particular gene of interest.

  • PDF

북한산 국립공원의 식물상

  • 이영노
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1985년도 워크샵 및 심포지엄 북한산국립공원의 식생
    • /
    • pp.19-22
    • /
    • 1985
  • Magnaporthe grisea (Hebert) Barr (anamorph: Pyricularia grisea) is a typical heterothallic Ascomycete and the causal agent of rice blast, one of the most destructive diseases on rice (Oryza sativa L.) worldwide. The interactions between cells of the pathogen and those of the host involve a complex of biological influences which can lead to blast disease. The early stages of infection process in particular may be viewed as a sequence of discrete and critical events. These include conidial attachment, gemination, and the formation of an appressorium, a dome-shaped and melanized infection structure. Disruption of this process at any point will result in failure of the pathogen to colonize host tissues. This may offer a new avenue for developing innovative crop protection strategies. To recognize and capture such opportunities, understanding the very bases of the pathogenesis at the cellular and molecular level is prerequisite. Much has been learned about environmental cues and endogenous signaling systems for the early infection-related morphogenesis in M. grisea during last several years. The study of signal transduction system in phytopathogenic filamentous fungi offers distinct advantages over traditional mammalian systems. Mammalian systems often contain multiple copies of important genes active in the same tissue under the same physiological processes. Functional redundancy, alternate gene splicing, and specilized isoforms make defining the role of any single gene difficult. Fungi and animals are closely related kingdoms [3], so inferences between these organisms are often justified. For many genes, fungi frequently possess only a single copy, thus phenotype can be attributed directly to the mutation or deletion of any particular gene of interest.

  • PDF

Biology and Health Aspects of Molds in Foods and the Environment

  • Bullerman, Lloyd-B.
    • 한국식품영양과학회지
    • /
    • 제22권3호
    • /
    • pp.359-366
    • /
    • 1993
  • Molds are eucaryotic, multicellular, multinucleate, filamentous organisms that reproduce by forming asexual and sexual spores. The spores are readily spread through the air and because they are very light-weight and tend to behave like dust particles, they are easily disseminated on air currents. Molds therefore are ubiquitous organisms that are found everywhere, throughout the environment. The natural habitat of most molds is the soil where they grow on and break down decaying vegetable matter. Thus, where there is decaying organic matter in an area, there are often high numbers of mold spores in the atmosphere of the environment. Molds are common contaminants of plant materials, including grains and seeds, and therefore readily contaminate human foods and animal feeds. Molds can tolerate relatively harsh environments and adapt to more severe stresses than most microorganisms. They require less available moisture for growth than bacteria and yeasts and can grow on substrates containing concentrations of sugar or salt that bacteria can not tolerate. Most molds are highly aerobic, requiring oxygen for growth. Molds grow over a wide temperature range, but few can grow at extremely high temperatures. Molds have simple nutritional requirements, requiring primarily a source of carbon and simple organic nitrogen. Because of this, molds can grow on many foods and feed materials and cause spoilage and deterioration. Some molds ran produce toxic substances known as mycotoxins, which are toxic to humans and animals. Mold growth in foods can be controlled by manipulating factors such as atmosphere, moisture content, water activity, relative humidity and temperature. The presence of other microorganisms tends to restrict mold growth, especially if conditions are favorable for growth of bacteria or yeasts. Certain chemicals in the substrate may also inhibit mold growth. These may be naturally occurring or added for the purpose of preservation. Only a relatively few of the approximately 100,000 different species of fungi are involved in the deterioration of food and agricultural commodities and production of mycotoxins. Deteriorative and toxic mold species are found primarily in the genera Aspergillus, Penicillium, Fusarium, Alternaria, Trichothecium, Trichoderma, Rhizopus, Mucor and Cladosporium. While many molds can be observed as surface growth on foods, they also often occur as internal contaminants of nuts, seeds and grains. Mold deterioration of foods and agricultural commodities is a serious problem world-wide. However, molds also pose hazards to human and animal health in the form of mycotoxins, as infectious agents and as respiratory irritants and allergens. Thus, molds are involved in a number of human and animal diseases with serious implication for health.

  • PDF